首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a coarse-grained approach for modeling the thermodynamic stability of single-domain globular proteins in concentrated aqueous solutions. Our treatment derives effective protein-protein interactions from basic structural and energetic characteristics of the native and denatured states. These characteristics, along with the intrinsic (i.e., infinite dilution) thermodynamics of folding, are calculated from elementary sequence information using a heteropolymer collapse theory. We integrate this information into Reactive Canonical Monte Carlo simulations to investigate the connections between protein sequence hydrophobicity, protein-protein interactions, protein concentration, and the thermodynamic stability of the native state. The model predicts that sequence hydrophobicity can affect how protein concentration impacts native-state stability in solution. In particular, low hydrophobicity proteins are primarily stabilized by increases in protein concentration, whereas high hydrophobicity proteins exhibit richer nonmonotonic behavior. These trends appear qualitatively consistent with the available experimental data. Although factors such as pH, salt concentration, and protein charge are also important for protein stability, our analysis suggests that some of the nontrivial experimental trends may be driven by a competition between destabilizing hydrophobic protein-protein attractions and entropic crowding effects.  相似文献   

2.
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.  相似文献   

3.
4.
The natural environment of a protein inside a cell is characterized by the almost complete lack of unoccupied space, limited amount of free water, and the tightly packed crowd of various biological macromolecules, such as proteins, nucleic acids, polysaccharides, and complexes thereof. This extremely crowded natural milieu is poorly mimicked by slightly salted aqueous solutions containing low concentrations of a protein of interest. The accepted practice is to model crowded environments by adding high concentrations of various polymers that serve as model “crowding agents” to the solution of a protein of interest. Although studies performed under these model conditions revealed that macromolecular crowding might have noticeable influence on various aspects related to the protein structure, function, folding, conformational stability, and aggregation propensity, the complete picture describing conformational behavior of a protein under these conditions is missing as of yet. Furthermore, there is an accepted belief that the conformational stability of globular proteins increases in the presence crowding agents due to the excluded volume effects. The goal of this study was to conduct a systematic analysis of the effect of high concentrations of PEG-8000 and Dextran-70 on the unfolding behavior of eleven globular proteins belonging to different structural classes.  相似文献   

5.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1914-1923
The correlation between protein solubility and the preferential interactions of proteins with solvent components was critically examined with aqueous MgCl2 as the solvent system. Preferential interaction and solubility measurements with three proteins, beta-lactoglobulin, bovine serum albumin, and lysozyme, resulted in similar patterns of interaction. At acid pH (pH 2-3) and lower salt concentrations (less than 2 M), the proteins were preferentially hydrated, while at higher salt concentrations, the interaction was either that of preferential salt binding or low salt exclusion. At pH 4.5-5, all three proteins exhibited either very low preferential hydration or preferential binding of MgCl2. These results were analyzed in terms of the balance between salt binding and salt exclusion attributed to the increase in the surface tension of water by salts, which is invariant with conditions. It was shown that the increase in salt binding at high salt concentration is a reflection of mass action, while its decrease at acid pH is due to the electrostatic repulsion between Mg2+ ions and the high net positive charge on the protein. The preferential interaction pattern was paralleled by the variation of protein solubility with solvent conditions. Calculation of the transfer free energies from water to the salt solutions for proteins in solution and in the precipitate showed dependencies on salt concentration. This indicates that the nature of interactions between proteins and solvent components is the same in solution and in the solid state, which implies no change in protein structure during precipitation. Analysis of the transfer free energies and preferential interaction parameter in terms of the salting-in, salting-out, and weak ion binding contributions has led to the conclusions that, when the weak ion binding contribution is small, the predominant protein-salt interaction must be that of preferential salt exclusion most probably caused by the increase of the surface tension of water by addition of the salt. A necessary consequence of this is salting-out of the protein, if the protein structure is to remain unaltered.  相似文献   

6.
Hydrophobic interaction chromatography (HIC) is known to be potentially denaturing to proteins, but the effects of mobile phase conditions on chromatographic behavior are not well understood. In this study, we apply a model describing the effects of secondary protein unfolding equilibrium on chromatographic behavior, including the effects of salt concentration on both stability and adsorption. We use alpha-lactalbumin as a model protein that in the presence and absence of calcium, allows evaluation of adsorption parameters for folded and unfolded species independently. The HIC adsorption equilibrium under linear binding conditions and solution phase protein stability have been obtained from a combination of literature and new experiments. The effect of salt concentration on protein stability and the rate constant for unfolding on the chromatographic surface have been determined by fitting the model to isocratic chromatography data under marginally stable conditions. The model successfully describes the effects of added calcium and ammonium sulfate. The results demonstrate the importance of considering the effects on stability of mobile phase modifiers when applying HIC to marginally stable  相似文献   

7.
Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes influence protein size, shape, and interprotein interaction strength.  相似文献   

8.
The dehydrins are a class of drought-induced proteins in plants that lack a fixed three-dimensional structure. Their specific molecular action, as well as the reason for their disordered character, is as yet poorly understood. It has been speculated, however, that the dehydrins are tuned to acquire a biologically active structure only under the conditions in which they normally function (i.e. upon dehydration). To test this hypothesis, we here investigate the effect of reduced water content and macromolecular crowding on three dehydrins from Arabidopsis (Arabidopsis thaliana). As a simplistic model for mimicking cellular dehydration, we used polyethylene glycol, glycerol, and sugars that plants naturally employ as compatible solutes (i.e. sucrose and glucose). Macromolecular crowding was induced by the large polysaccharides Ficoll and dextran. The results show that the dehydrins are remarkably stable in their disordered state and are only modestly affected by the solvent alterations. A notable exception is the dehydrin Cor47, which shows a small, intrinsic increase in helical structure at high concentrations of osmolytes. We also examined the effect of phosphorylation but found no evidence that such posttranslational modifications of the dehydrin sequences modulate their structural response to osmolytes and crowding agents. These results suggest that the dehydrins are highly specialized proteins that have evolved to maintain their disordered character under conditions in which unfolded states of several globular proteins would tend to collapse.  相似文献   

9.
Using static and dynamic light scattering we have investigated the effects of either strongly chaotropic, nearly neutral or strongly kosmotropic salt ions on the hydration shell and the mutual hydrodynamic interactions of the protein lysozyme under conditions supportive of protein crystallization. After accounting for the effects of protein interaction and for changes in solution viscosity on protein diffusivity, protein hydrodynamic radii were determined with ±0.25 Å resolution. No changes to the extent of lysozyme hydration were discernible for all salt-types, at any salt concentration and for temperatures between 15-40°C. Combining static with dynamic light scattering, we also investigated salt-induced changes to the hydrodynamic protein interactions. With increased salt concentration, hydrodynamic interactions changed from attractive to repulsive, i.e., in exact opposition to salt-induced changes in direct protein interactions. This anti-correlation was independent of solution temperature or salt identity. Although salt-specific effects on direct protein interactions were prominent, neither protein hydration nor solvent-mediated hydrodynamic interactions displayed any obvious salt-specific effects. We infer that the protein hydration shell is more resistant than bulk water to changes in its local structure by either chaotropic or kosmotropic ions.  相似文献   

10.
Unfolded states of ribonuclease A were used to investigate the effects of macromolecular crowding on macromolecular compactness and protein folding. The extent of protein folding and compactness were measured by circular dichroism spectroscopy, fluorescence correlation spectroscopy, and NMR spectroscopy in the presence of polyethylene glycol (PEG) or Ficoll as the crowding agent. The unfolded state of RNase A in a 2.4 M urea solution at pH 3.0 became native in conformation and compactness by the addition of 35% PEG 20000 or Ficoll 70. In addition, the effects of macromolecular crowding on inert macromolecule compactness were investigated by fluorescence correlation spectroscopy using Fluorescence-labeled PEG as a test macromolecule. The size of Fluorescence-labeled PEG decreased remarkably with an increase in the concentration of PEG 20000 or Ficoll 70. These results show that macromolecules are favored compact conformations in the presence of a high concentration of macromolecules and indicate the importance of a crowded environment for the folding and stabilization of globular proteins. Furthermore, the magnitude of the effects on macromolecular crowding by the different sizes of background molecules was investigated. RNase A and Fluorescence-labeled PEG did not become compact, and had folded conformation by the addition of PEG 200. The effect of the chemical potential on the compaction of a test molecule in relation to the relative sizes of the test and background molecules is also discussed.  相似文献   

11.
We investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show that to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.  相似文献   

12.
We investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show that to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.  相似文献   

13.
The sol-gel method of encapsulating proteins in a silica matrix was investigated as a potential experimental system for testing the effects of molecular confinement on the structure and stability of proteins. We demonstrate that silica entrapment (1) is fully compatible with structure analysis by circular dichroism, (2) allows conformational studies in contact with solvents that would otherwise promote aggregation in solution, and (3) generally enhances thermal protein stability. Lysozyme, alpha-lactalbumin, and metmyoglobin retained native-like solution structures following sol-gel encapsulation, but apomyoglobin was found to be largely unfolded within the silica matrix under control buffer conditions. The secondary structure of encapsulated apomyoglobin was unaltered by changes in pH and ionic strength of KCl. Intriguingly, the addition of other neutral salts resulted in an increase in the alpha-helical content of encapsulated apomyoglobin in accordance with the Hofmeister ion series. We hypothesize that protein conformation is influenced directly by the properties of confined water in the pores of the silica. Further work is needed to differentiate the steric effects of the silica matrix from the solvent effects of confined water on protein structure and to determine the extent to which this experimental system mimics the effects of crowding and confinement on the function of macromolecules in vivo.  相似文献   

14.
We have studied the effect of a crowded (macromolecular) solution on reaction rates of the decarboxylating enzymes urease, pyruvate decarboxylase and glutamate decarboxylase. A variety of crowding agents were used including haemoglobin, lysozyme, various dextrans and polyethylene glycol. Enzyme reaction rates of all three enzymes show two different types of effect that separate the globular proteins from the polysaccharides/polymers. Increasing concentration of globular proteins caused a dramatic rise in enzyme activity up to 30% crowding concentration then the activity decreased, whereas the polymers caused a concentration dependent decrease in activity. The viscosities of the globular proteins were low compared to the polymers. The increased activity with proteins may be due to the decreased amount of free water, which leads to higher effective concentration of substrates, or to an increased oligomeric state by self-association. The lower activities of all enzymes with all agents at high concentrations may be explained by a decrease in rates of diffusion. An increase in protein crowding (decrease in cell water content) may contribute to pathological conditions including cataract and Alzheimer's disease.  相似文献   

15.
Understanding of protein structure and stability gained to date has been acquired through investigations made under dilute conditions where total macromolecular concentration never surpasses 10 g l−1. However, biological macromolecules are known to evolve and function under crowded intracellular environments that comprises of proteins, nucleic acids, ribosomes and carbohydrates etc. Crowded environment is known to result in altered biological properties including thermodynamic, structural and functional aspect of macromolecules as compared to the macromolecules present in our commonly used experimental dilute buffers (for example, Tris HCl or phosphate buffer). In this study, we have investigated the thermodynamic and structural consequences of synthetic crowding agent (Ficoll 70) on three different proteins (Ribonuclease-A, lysozyme and holo α-lactalbumin) at different pH values. We report here that the effect of crowding is protein dependent in terms of protein thermal stability and structure. We also observed that the structural characteristics of the denatured state determines if crowding will have an effect or not on the protein stability.  相似文献   

16.
Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with 2H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.  相似文献   

17.
Proteins aggregated into spherulite structures of amyloid fibrils have been observed in patients with certain brain diseases such as Alzheimer's and Parkinson's. The conditions under which these protein spherulites form and grow are not currently known. In order to illuminate the role of environmental factors on protein spherulites, this research aims to explore the kinetics and mechanisms of spherulite formation and growth, as monitored by optical microscopy, in a range of salt concentrations, and initial protein concentrations for two model proteins: bovine β-lactoglobulin and insulin.These two proteins are significantly different in their size and fibril growth rate, but both of these proteins have been shown previously to form amyloid fibrils and spherulites under low pH conditions. The growth pattern of spherulites in each protein solution was monitored and quantified using a linear polymerisation reaction model which allowed for quantification of formation and growth rates across experiments.Two themes were found in the experimental results of spherulite formation and growth: the two model protein systems behaved very similarly to one another when viewed on relative scales, and the spherulites in these systems followed trends seen in some of the previous research of amyloid fibril growth.Specifically, in the presence of salt, both β-lactoglobulin and insulin systems demonstrated maximum growth rates at the same salt concentration, possibly suggesting the role that salt plays in altering rates may not be protein specific (e.g. anion binding to aid unfolding), but may be generic (e.g. electrostatic shielding of repelling charges).Specifically, with variations in the initial protein concentrations, spherulite trends across both model systems were a decrease in appearance time (faster appearance) and an increased growth rate as concentration increased. The appearance time decreased at a diminishing rate towards a limiting shortest appearance time. A limiting shortest appearance time suggests that, in the higher concentrations of protein tested, spherulite formation is not dependent upon the spatial concentration of protein but on the preparedness of the protein to form or join the spherulite.  相似文献   

18.
Martin J 《Biochemistry》2002,41(15):5050-5055
Macromolecular crowding is a critical parameter affecting the efficiency of cellular protein folding. Here we show that the proteins dihydrofolate reductase, enolase, and green fluorescent protein, which can fold spontaneously in diluted buffer, lose this ability in a crowded environment. Instead, they accumulate as soluble, protease-sensitive non-native species. Their folding becomes dependent on the complete GroEL/GroES chaperonin system and is not affected by trap-GroEL, indicating that folding has to occur in the chaperonin cavity with release of nativelike proteins into the bulk solution. In addition, we demonstrate that efficient folding in the chaperonin cavity requires ATP hydrolysis, as formation of ternary GroEL/GroES complexes with substrate proteins in the presence of ADP results only in very inefficient reactivation. However, protein refolding reactions using ADP-fluoroaluminate complexes, or single-ring GroEL and GroES under conditions where only a single round of ATP hydrolysis occurs, yield large amounts of refolded enzymes. Thus, the mode of initial ternary complex formation appears to be critical for subsequent productive release of substrate into the cavity under certain crowding conditions, and is only efficient when triggered by ATP hydrolysis. Our data indicate that stringent conditions of crowding can impart a stronger dependence of folding proteins on the assistance by chaperonins.  相似文献   

19.
Macromolecular crowding is expected to have several significant effects on protein aggregation; the major effects will be those due to excluded volume and increased viscosity. In this report we summarize data demonstrating that macromolecular crowding may lead to a dramatic acceleration in the rate of protein aggregation and formation of amyloid fibrils, using the protein alpha-synuclein. The aggregation of alpha-synuclein has been implicated as a critical factor in development of Parkinson's disease. Various types of polymers, from neutral polyethylene glycols and polysaccharides (Ficolls, dextrans) to inert proteins, are shown to accelerate alpha-synuclein fibrillation. The stimulation of fibrillation increases with increasing length of polymer, as well as increasing polymer concentration. At lower polymer concentrations (typically up to approximately 100 mg/ml) the major effect is ascribed to excluded volume, whereas at higher polymer concentrations evidence of opposing viscosity effects become apparent. Pesticides and metals, which are linked to increased risk of Parkinson's disease by epidemiological studies, are shown to accelerate alpha-synuclein fibrillation under conditions of molecular crowding.  相似文献   

20.
Zhou HX 《Proteins》2005,61(1):69-78
Salting-out of proteins was discovered in the nineteenth century and is widely used for protein separation and crystallization. It is generally believed that salting-out occurs because at high concentrations salts and the protein compete for solvation water. Debye and Kirkwood suggested ideas for explaining salting-out (Debeye and MacAulay, Physik Z; 1925;131:22-29; Kirkwood, In: Proteins, amino acids and peptides as ions and dipolar ions. New York: Reinhold; 1943. p 586-622). However, a quantitative theory has not been developed, and such a theory is presented here. It is built on Kirkwood's idea that a salt ion has a repulsive interaction with an image charge inside a low dielectric cavity. Explicit treatment is given for the effect of other salt ions on the interaction between a salt ion and its image charge. When combined with the Debye-Hückel effect of salts on the solvation energy of protein charges (i.e., salting-in), the characteristic curve of protein solubility versus salt concentration is obtained. The theory yields a direct link between the salting-out effect and surface tension and is able to provide rationalizations for the effects of salt on the folding stability of several proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号