首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent structural studies of the troponin (Tn) core complex have shown that the regulatory head containing the N-lobe of TnC is connected to the IT arm by a flexible linker of TnC. The IT arm is a long coiled-coil formed by alpha-helices of TnI and TnT, plus the C-lobe of TnC. The TnT is thought to play a pivotal role in the linking of Ca(2+) -triggered conformational changes in thin filament regulatory proteins to the activation of cross-bridge cycling. However, a functional domain at the C-terminus of TnT is missing from the Tn core complex. In this study, we intended to determine the proximity relationship between the central helix of TnC and the TnT C-terminus in the binary and the ternary complex with and without Ca2+ by using pyrene excimer fluorescence spectroscopy and fluorescence resonance energy transfer. Chicken fast skeletal TnC contains a Cys102 at the E helix, while TnT has a Cys264 at its C-terminus. These two cysteines were specifically labeled with sulfhydryl-reactive fluorescence probes. The measured distance in the binary complex was about 19 Angstroms and slightly increased when they formed the ternary complex with TnI (20 Angstroms). Upon Ca2+ binding the distance was not affected in the binary complex but increased by approximately 4 Angstroms in the ternary complex. These results suggest that TnI plays an essential role in the Ca(2+) -mediated change in the spatial relationship between the C-lobe of TnC and the C-terminus of TnT.  相似文献   

2.
3.
The three components of troponin were prepared from chicken breast and leg muscle. The troponin I and T components were separated by chromatography on DEAE-cellulose after citraconylation and without the use of urea-containing buffers. The troponin I and C components were similar to their counterparts from rabbit fast skeletal muscle, and a comparison of the troponin I components from breast and leg muscle by amino acid analysis, gel electrophoresis and peptide 'mapping' provides strong evidence for the identity of these proteins. The molecular weights of the troponin T components from breast and leg muscle were 33 500 and 30 500 respectively, determined by gel filtration. A comparison of these two proteins by methods similar to those used for the troponin I components suggested that they differed only in the N-terminal region of the sequence, the breast-muscle troponin T having an extra length of polypeptide chain of approx. 24 residues that is rich in histidine and alanine. The N-terminal hexapeptide sequence, however, is the same in both proteins and is (Ser,Asx,Glx)Thr-Glu-Glu. The genetic implications of these findings are considered.  相似文献   

4.
Calcium-dependent distance changes have been determined by resonance energy transfer in binary and ternary troponin complexes in order to collect evidence for the structural rearrangements which are part of the hypothetical trigger mechanism of skeletal muscle contraction. Donor and acceptor fluorophores were either intrinsic tryptophans in subunits with a favourable sequence from different species, quasi-intrinsic Tb3+ ions bound to troponin C or extrinsic labels attached to specific cysteine or methionine residues. All chemically modified subunits proved fully active in conferring calcium sensitivity onto myosin ATPase. Nine distances were determined between five sites which allowed construction of a three-dimensional lattice representing the spatial distribution of four sites in the ternary complex of troponin C, I and T. Distances in binary complexes were nearly unaltered upon addition of the third subunit. Regulatory calcium binding caused distance changes of the order of 0.7-1.1 nm. In view of the large displacements of the hypothetical mechanism, they turned out to be smaller than anticipated. The fluorophoric sites selected may be localized in a zone of the troponin complex which happens to be relatively little affected by the mechanism. Alternatively, amplification of the moderate changes seen here would require the complete set of thin filament proteins.  相似文献   

5.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development.  相似文献   

6.
The effect of three components of troponin (TN C, I, T) on the gelation of F-actin was investigated by measuring the increase in viscosity at a very low velocity gradient in a rotating viscometer. TN I or TN T greatly enhanced the generation of F-actin. The effect of TN I-C or T-C complex became Ca-dependent: in the absence of Ca, the complex increased the rate of viscosity rise of F-actin, but in its presence this enhancing effect was almost absent. For these actions, the presence of tropomyosin or heat treatment at 45 degrees was not required. These results can be explained in terms of strengthened interactions of F-actin particles bound with TN T or TN I and the release of TN I-C or TN T-C in the presence of Ca.  相似文献   

7.
Fast and slow/cardiac troponin C (TnC) are the two different isoforms of TnC. Expression of these isoforms is developmentally regulated in vertebrate skeletal muscle. Therefore, in our studies, the pattern of their expression was analyzed by determining the steady-state levels of both TnC mRNAs. It was also examined if mRNAs for both isoforms of TnC were efficiently translated during chicken skeletal muscle development. We have used different methods to determine the steady-state levels of TnC mRNAs. First, probes specific for the fast and slow TnC mRNAs were developed using a 390 base pair (bp) and a 255 bp long fragment, of the full-length chicken fast and slow TnC cDNA clones, respectively. Our analyses using RNA-blot technique showed that fast TnC mRNA was the predominant isoform in embryonic chicken skeletal muscle. Following hatching, a significant amount of slow TnC mRNA began to accumulate in the skeletal (pectoralis) muscle. At 43 weeks posthatching, the slow TnC mRNA was nearly as abundant as the fast isoform. Furthermore, a majority of both slow and fast TnC mRNAs was found to be translationally active. A second method allowed a more reliable measure of the relative abundance of slow and fast TnC mRNAs in chicken skeletal muscle. We used a common highly conserved 18-nucleotide-long sequence towards the 5'-end of these mRNAs to perform primer extension analysis of both mRNAs in a single reaction. The result of these analyses confirmed the predominance of fast TnC mRNA in the embryonic skeletal muscle, while significant accumulation of slow TnC mRNA was observed in chicken breast (pectoralis) muscle following hatching. In addition to primer extension analysis, polymerase chain reaction was used to amplify the fast and slow TnC mRNAs from cardiac and skeletal muscle. Analysis of the amplified products demonstrated the presence of significant amounts of slow TnC mRNA in the adult skeletal muscle.  相似文献   

8.
We measured EPR spectra from a spin label on the Cys133 residue of troponin I (TnI) to identify Ca(2+)-induced structural states, based on sensitivity of spin-label mobility to flexibility and tertiary contact of a polypeptide. Spectrum from Tn complexes in the -Ca(2+) state showed that Cys133 was located at a flexible polypeptide segment (rotational correlation time tau=1.9ns) that was free from TnC. Spectra of both Tn complexes alone and those reconstituted into the thin filaments in the +Ca(2+) state showed that Cys133 existed on a stable segment (tau=4.8ns) held by TnC. Spectra of reconstituted thin filaments (-Ca(2+) state) revealed that slow mobility (tau=45ns) was due to tertiary contact of Cys133 with actin, because the same slow mobility was found for TnI-actin and TnI-tropomyosin-actin filaments lacking TnC, T or tropomyosin. We propose that the Cys133 region dissociates from TnC and attaches to the actin surface on the thin filaments, causing muscle relaxation at low Ca(2+) concentrations.  相似文献   

9.
With the recent advances in structure determination of the troponin complex, it becomes even more important to understand the dynamics of its components and how they are affected by the presence or absence of Ca(2+). We used NMR techniques to study the backbone dynamics of skeletal troponin C (TnC) in the complex. Transverse relaxation-optimized spectroscopy pulse sequences and deuteration of TnC were essential to assign most of the TnC residues in the complex. Backbone amide (15)N relaxation times were measured in the presence of Ca(2+) or EGTA/Mg(2+). T(1) relaxation times could not be interpreted precisely, because for a molecule of this size, the longitudinal backbone amide (15)N relaxation rate due to chemical shift anisotropy and dipole-dipole interactions becomes too small, and other relaxation mechanisms become relevant. T(2) relaxation times were of the expected magnitude for a complex of this size, and most of the variation of T(2) times in the presence of Ca(2+) could be explained by the anisotropy of the complex, suggesting a relatively rigid molecule. The only exception was EF-hand site III and helix F immediately after, which are more flexible than the rest of the molecule. In the presence of EGTA/Mg(2+), relaxation times for residues in the C-domain of TnC are very similar to values in the presence of Ca(2+), whereas the N-domain becomes more flexible. Taken together with the high flexibility of the linker between the two domains, we concluded that in the absence of Ca(2+), the N-domain of TnC moves independently from the rest of the complex.  相似文献   

10.
H S Park  B J Gong    T Tao 《Biophysical journal》1994,66(6):2062-2065
Various thio-reactive bifunctional crosslinkers as well as 5,5'-dithiobis(2-nitrobenzoate)-mediated disulfide bond formation were used to crosslink troponin-C and troponin-I, the Ca(2+)-binding and inhibitory subunits of troponin, respectively. In all cases, substantial crosslinking was obtained when the reactions were carried out in the absence of Ca2+. No disulfide crosslinking occurred if either Cys98 of TnC, or Cys133 of TnI were blocked, indicating that these thiols are involved in the crosslinking. Troponin containing the disulfide crosslink is no longer capable of regulating actomyosin ATPase activity in a Ca(2+)-dependent manner. Our results suggest that the relative movement between the Cys98 region of TnC and the Cys133 region of TnI is required for the Ca(2+)-regulatory process in skeletal muscle.  相似文献   

11.
Developmental changes in chicken skeletal myosin isoenzymes.   总被引:1,自引:0,他引:1  
J F Hoh 《FEBS letters》1979,98(2):267-270
  相似文献   

12.
J E Van Eyk  C M Kay  R S Hodges 《Biochemistry》1991,30(41):9974-9981
The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
A mutant (M48Y) of chicken skeletal muscle troponin C was prepared in which Tyr replaced Met-48 of the recombinant protein (rTnC). Since Tyr and Trp are normally absent, spectral properties could be unambiguously assigned to the site of substitution. In the crystal structure, this residue lies at the COOH-terminal end of the B-helix of the N domain in a region postulated to undergo a significant conformational change to a more polar environment upon Ca2+ binding [Herzberg et al. (1986) J. Biol. Chem. 261, 2638-2644]. Comparison of the far-UV CD spectra of M48Y and rTnC in the absence and presence of Ca2+ indicated no overall structural alteration due to the mutation. However, Ca2+ titration of the ellipticity change showed a reduction in Ca2+ affinity and cooperativity of sites I and II. A Ca(2+)-induced increase in the near-UV ellipticity of M48Y at pH 7.12 and a red shift in its UV absorbance spectrum occurred over a range of free [Ca2+] attributable to the N-domain transition only. This was largely abolished at pH 5.3 where Ca2+ no longer binds to sites I and II. That region of the 1H NMR spectrum attributable to Tyr was broadened upon Ca2+ binding. These Ca(2+)-induced changes are consistent with the environment of the Tyr side chain becoming chiral, less polar, and more immobile, all in a direction opposite to that predicted. These observations indicate that while the general features of the postulated model are valid, it is unlikely to be correct in detail.  相似文献   

15.
The aim of this study is to investigate the molecular events associated with the deleterious effects of acidosis on the contractile properties of cardiac muscle as in the ischemia of heart failure. We have conducted a study of the effects of increasing acidity on the Ca(2+) induced conformational changes of pyrene labelled cardiac troponin C (PIA-cTnC) in isolation and in complex with porcine cardiac or chicken pectoral skeletal muscle TnI and/or TnT. The pyrene label has been shown to serve as a useful fluorescence reporter group for conformational and interaction events of the N-terminal regulatory domain of TnC with only minimal fluorescence changes associated with C-terminal domain. Results obtained show that the significant decreases at pH 6.0 of site II Ca(2+) affinity of PIA-cTnC when complexed as a binary complex with either cTnI or cTnT are significantly reduced when cTnI is replaced with sTnI or cTnT with sTnT. However, this effect is appreciably diminished when the cTnI and cTnT in the ternary complex are replaced by sTnI and sTnT. The smaller effects in the ternary complex of replacing both cTnI and cTnT by their skeletal counterparts on depressing the Ca(2+) affinity from pH 7.0 to 6.0 arise from TnI replacement. Thus, changes in TnC conformation resulting from isoform-specific interactions with TnI and TnT could be an integral part of the effect of pH on myofilament Ca(2+)sensitivity.  相似文献   

16.
The binding of the chymotryptic troponin T subfragments to tropomyosin, troponin I, and troponin C was semiquantitatively examined by using affinity chromatography, and also by co-sedimentation with F-actin and polyacrylamide gel electrophoresis in 14 mM Tris/90 mM glycine. Circular dichroism spectra of the subfragments were measured to confirm that the subfragments retained their conformational structures. Based on these results, the binding sites of tropomyosin, troponin I, and troponin C on the troponin T sequence were elucidated. Tropomyosin bound mainly to the region of troponin T1 (residues 1-158) with the same binding strength as to the original troponin T. The C-terminal region of troponin T (residues 243-259) was the second binding site to tropomyosin under physiological conditions. The binding site of troponin I was concluded to be the region including residues 223-227. The binding of troponin C was dependent on Ca2+ ion concentration. The C-terminal region of troponin T2 (residues 159-259) was indicated to be the Ca2+-independent troponin C-binding site and the N-terminal side of troponin T2 to be the Ca2+-dependent site.  相似文献   

17.
We have used 19F nuclear magnetic resonance spectroscopy to study the interaction of the inhibitory region of troponin (TnI) with apo- and calcium(II)-saturated turkey skeletal troponin C (TnC), using the synthetic TnI analogue N alpha-acetyl[19FPhe106]TnI(104-115)amide. Dissociation constants of Kd = (3.7 +/- 3.1) x 10(-5) M for the apo interaction and Kd = (4.8 +/- 1.8) x 10(-5) M for the calcium(II)-saturated interaction were obtained using a 1:1 binding model of peptide to protein. The 19F NMR chemical shifts for the F-phenylalanine of the bound peptide are different from the apo- and calcium-saturated protein, indicating a different environment for the bound peptide. The possibility of 2:1 binding of the peptide to Ca(II)-saturated TnC was tested by calculating the fit of the experimental titration data to a series of theoretical binding curves in which the dissociation constants for the two hypothetical binding sites were varied. We obtained the best fit for 0.056 mM less than or equal to Kd1 less than or equal to 0.071 mM and 0.5 mM less than or equal to Kd2 less than or equal to 2.0 mM. These results allow the possibility of a second peptide binding site on calcium(II)-saturated TnC with an affinity 10- to 20-fold weaker than that of the first site.  相似文献   

18.
We determined the free energy of interaction between rabbit skeletal troponin I (TNI) and troponin C (TNC) at 10 degrees and 20 degrees C with fluorescently labeled proteins. The sulfhydryl probe 5-iodoacetamidoeosin (IAE) was attached to cysteine (Cys)-98 of TNC and to Cys-133 of TNI, and each of the labeled proteins was titrated with the other unlabeled protein. The association constant for formation of the complex between labeled TNC (TNC*) and TNI was 6.67 X 10(5) M-1 in 0.3 M KCl, and pH 7.5 at 20 degrees C. In the presence of bound Mg2+, the binding constant increased to 4.58 X 10(7) M-1 and in the presence of excess of Ca2+, the association constant was 5.58 X 10(9) M-1. Very similar association constants were obtained when labeled TNI was titrated with unlabeled TNC. The energetics of Ca2+ binding to TNC* and the complex TNI X TNC* were also determined at 20 degrees C. The two sets of results were used to separately determine the coupling free energy for binding TNI and Mg2+, or Ca2+ to TNC. The results yielded a total coupling free energy of -5.4 kcal. This free energy appeared evenly partitioned into the two species: TNI X TNC(Mg)2 or TNI X TNC(Ca)2, and TNI X TNC(Ca)4. The first two species were each stabilized by -2.6 kcal, with respect to the Ca2+ free TNI X TNC complex, and TNI X TNC(Ca)4 was stabilized by -2.8 kcal, respect to TNI X TNC(Ca)2 or TNI X TNC(Mg)2. The coupling free energy was shown to produce cooperatively complexes formed between TNI and TNC in which the high affinity sites were initially saturated as a function of free Ca2+ to yield TNI X TNC(Ca)4. This saturation occurred in the free Ca2+ concentration range 10(-7) to 10(-5) M. The cooperative strengthening of the linkage between TNI and TNC induced by Ca2+ binding to the Ca2+-specific sites of TNC may have a direct relationship to activation of actomyosin ATPase. The nature of the forces involved in the Ca2+-induced strengthening of the complex is discussed.  相似文献   

19.
The level of functional mRNA coding for myofibrillar proteins was studied during development of the chicken skeletal muscle. RNA isolated from the developing chicken muscle directed protein synthesis in a wheat germ cell-free system. By means of polyacrylamide gel electrophoresis and immunological analysis, tropomyosin subunits and troponin components were identified among the cell-free translation products. The mRNA activities for alpha- and beta-subunit of tropomyosin were prominent in the embryonic breast muscle as well as in the embryonic leg muscle. At the early post-embryonic stage, the mRNA activity for beta-subunit disappeared from the breast muscle, while those for alpha- and beta-subunit were detectable in the leg muscle. Troponin-C and troponin-I synthesized in vitro in response to the muscle RNA formed a binary complex in the presence of calcium ion. Despite the observed difference in molecular weight between troponin-Ts in the breast and leg muscle, RNA preparations from the two muscles encoded identical troponin-Ts whose molecular weights were indistinguishable from that of troponin-T present in the breast muscle of adult chicken. It is suggested from these results that the biosynthesis of tropomyosin is regulated at the pre-translational level during the development of the chicken skeletal muscle, whereas post-translational (or co-translational) events may produce the tissue-specific form of troponin-T.  相似文献   

20.
In order to help understand the spatial rearrangements of thin filament proteins during the regulation of muscle contraction, we used fluorescence resonance energy transfer (FRET) to measure Ca(2+)-dependent, myosin-induced changes in distances and fluorescence energy transfer efficiencies between actin and the inhibitory region of troponin I (TnI). We labeled the single Cys-117 of a mutant TnI with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS) and Cys-374 of actin with 4-dimethylaminophenylazophenyl-4'-maleimide (DABmal). These fluorescent probes were used as donor and acceptor, respectively, for the FRET measurements. We reconstituted a troponin-tropomyosin (Tn-Tm) complex which contained the AEDANS-labeled mutant TnI, together with natural troponin T (TnT), troponin C (TnC) and tropomyosin (Tm) from rabbit fast skeletal muscle. Fluorescence titration of the AEDANS-labeled Tn-Tm complex with DABmal-labeled actin, in the presence and absence of Ca(2+), resulted in proportional, linear increases in energy transfer efficiency up to a 7:1 molar excess of actin over Tn-Tm. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased from 37.9 A to 44.1 A when Ca(2+) bound to the regulatory sites of TnC. Titration of reconstituted thin filaments, containing AEDANS-labeled Tn-Tm and DABmal-labeled actin, with myosin subfragment 1 (S1) decreased the energy transfer efficiency, in both the presence and absence of Ca(2+). The maximum decrease occurred at well below stoichiometric levels of S1 binding to actin, showing a cooperative effect of S1 on the state of the thin filaments. S1:actin molar ratios of approximately 0.1 in the presence of Ca(2+), and approximately 0.3 in the absence of Ca(2+), were sufficient to cause a 50% reduction in normalized transfer efficiency. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased by approximately 7 A in the presence of Ca(2+) and by approximately 2 A in the absence of Ca(2+) when S1 bound to actin. Our results suggest that TnI's interaction with actin inhibits actomyosin ATPase activity by modulating the equilibria among active and inactive states of the thin filament. Structural rearrangements caused by myosin S1 binding to the thin filament, as detected by FRET measurements, are consistent with the cooperative behavior of the thin filament proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号