首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The S(3) state of the water-oxidizing complex (WOC) of photosystem II (PSII) is the last state that can be trapped before oxygen evolution occurs at the transient S(4) state. A number of EPR-detectable intermediates are associated with this critical state. The preceding paper examined mainly the decay of S(3) at cryogenic temperatures leading to the formation of a proton-deficient configuration of S(2) termed S(2)'. This second paper examines all intermediates formed by the near-IR light (NIR) excitation of the S(3) state and compares these with the light-excitation products of the S(2)' state. The rather complex set of observations is organized in a comprehensive flowchart, the central part of which is the S(3)...Q(A)(-) state. This state can be converted to various intermediates via two main pathways: (A) Excitation of S(3) by NIR light at temperatures below 77 K results presumably in the formation of an excited S(3) state, S(3), which decays via either of two pathways. Slowly at liquid helium temperatures but much faster at 77 K, S(3) decays to an EPR-silent state, denoted S(3)' ', which by raising the temperature to ca. 190 K converts to a spin configuration of the Mn cluster, characterized by g = 21, 3.7 in perpendicular and g = 23 in parallel mode EPR, denoted S(3)'. Upon further warming to 220 K, S(3)' relaxes to the untreated S(3) state. Below about 77 K and more favorably at liquid helium temperatures, an alternative pathway of S(3) decay via the metallo-radical intermediate S(2)'Z*...Q(A)(-) can be traced. This leads to the metastable state S(2)'Z...Q(A) via charge recombination. S(2)'Z* is characterized by a split-radical signal at g = 2, while all S(2)' transients are characterized by the same g = 5/2.9 (S = (7)/(2)) configuration of the Mn cluster with small modifications, reflecting an influence of the tyr Z oxidation state on the crystal-field symmetry at the Mn cluster. (B) S(2)'...Q(A) can be reached alternatively by the slow charge recombination of S(3) and Q(A)(-) at 77 K. White-light illumination of S(2)'.Q(A) below about 20 K results in charge separation, reforming the intermediate S(2)'Z*...Q(A)(-). Thermally activated branches to the main pathways are also described, e.g., at elevated temperatures tyr Z* reoxidizes S(2)' to the S(3) state. The above observations are discussed in terms of a molecular model of the S(3) state of the OEC. Main aspects of the model are the following. Intermediates, isoelectronic to S(3), are attributed to the NIR-induced translocation of the positive hole to different Mn ligands, or to tyr Z. On the basis of a comparison of the electron-donating efficiency of tyr Z and tyr D at cryogenic temperatures, it is inferred that the Mn cluster acts as the main proton acceptor from tyr Z. Water associated with the Mn cluster is assumed to be in hydrogen-bonding equilibrium with tyr Z, and an array comprising this water and adjacent water (or OH or O) ligands to Mn followed by a sequence of proton acceptors is proposed to act as an efficient proton translocation pathway. Oxidation of the tyrosine by P(680)(+) repels protons to and out from the Mn cluster. This proposed role of tyr Z in the water-splitting process is described as a proton repeller/electron abstractor.  相似文献   

2.
The Mn(4)-cluster of photosystem II (PSII) from Synechococcus elongatus was studied by electron paramagnetic resonance (EPR) spectroscopy after a series of saturating laser flashes given in the presence of either methanol or ethanol. Results were compared to those obtained in similar experiments done on PSII isolated from plants. The flash-dependent changes in amplitude of the EPR multiline signals were virtually identical in all samples. In agreement with earlier work [Messinger, J., Nugent, J. H. A., and Evans, M. C. W. (1997) Biochemistry 36, 11055-11060; Ahrling, K. A., Peterson, S., and Styring, S. (1997) Biochemistry 36, 13148-13152], detection of an EPR multiline signal from the S(0) state in PSII from plants was only possible with methanol present. In PSII from S. elongatus, it is shown that the S(0) state exhibits an EPR multiline signal in the absence of methanol (however, ethanol was present as a solvent for the artificial electron acceptor). The hyperfine lines are better resolved when methanol is present. The S(0) multiline signals detected in plant PSII and in S. elongatus were similar but not identical. Unlike the situation seen in plant PSII, the S(2) state in S. elongatus is not affected by the addition of methanol in that (i) the S(2) multiline EPR signal is not modified by methanol and (ii) the spin state of the S(2) state is affected by infrared light when methanol is present. It is also shown that the magnetic relaxation properties of an oxidized low-spin heme, attributed to cytochrome c(550), vary with the S states. This heme then is in the magnetic environment of the Mn(4) cluster.  相似文献   

3.
The pulsed EPR inversion recovery sequence has been utilized to monitor the temperature dependence of the electron spin-lattice relaxation rate of the Mn cluster of the Photosystem II oxygen evolving complex poised in a variety of S 2 state forms giving rise to g = 2 multiline EPR signals. A previous study (Lorigan and Britt (1994) Biochemistry 33: 12072–12076) showed that for PS II membranes treated with 5% ethanol, the S 2 state Mn cluster relaxes via the Orbach spin-lattice relaxation mechanism, where the relaxation is enhanced via phonon scattering off an excited state spin manifold, in this case at an energy of Δ = 36.5 cm−1 above the S = 1/2 ground state giving rise to the multiline EPR signal. Parallel experiments are reported for PS II membranes with 5% methanol, treated with ammonia, and following short and long term dark adaptation. In each case, the temperature dependence of the electron spin-lattice relaxation rate is consistent with Orbach relaxation, and the range of excited state energies is relatively narrow (33.8 cm−1 ≤ Δ ≤ 39.7 cm−1). In addition, short term dark adapted (6 min, ‘active state’) PS II membranes show biphasic recovery traces which indicate that a minority fraction of the oxygen evolving complexes are trapped in a form with greatly slowed spin-lattice relaxation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Sjöholm J  Styring S  Havelius KG  Ho FM 《Biochemistry》2012,51(10):2054-2064
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(?), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(?)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.  相似文献   

5.
Matsukawa T  Mino H  Yoneda D  Kawamori A 《Biochemistry》1999,38(13):4072-4077
The light-induced new EPR signals at g = 12 and 8 were observed in photosystem II (PS II) membranes by parallel polarization EPR. The signals were generated after two flashes of illumination at room temperature, and the signal intensity had four flashes period oscillation, indicating that the signal origin could be ascribed to the S3-state. Successful simulations were obtained assuming S = 1 spin for the values of the zero-field parameters, D = +/-0.435 +/- 0. 005 cm-1 and E/D = -0.317 +/- 0.002. Orientation dependence of the g =12 and 8 signal intensities shows that the axial direction of the zero-field interaction of the manganese cluster is nearly parallel to the membrane normal.  相似文献   

6.
The amplitude of the g = 2 Mn 'multiline' EPR signal of the S2 state of the photosynthetic oxygen-evolving complex varies inversely with temperature, indicating that this signal arises from a ground spin state. Electron spin echo experiments at temperatures of 4.2 K and 1.4 K show such Curie-law behavior of the g = 2 multiline EPR signal, as do continuous-wave EPR experiments performed at a non-saturating microwave power in the range from 15.0 K to 4.2 K.  相似文献   

7.
Geijer P  Morvaridi F  Styring S 《Biochemistry》2001,40(36):10881-10891
Here we report an EPR signal that is induced by a pH jump to alkaline pH in the S(3) state of the oxygen-evolving complex in photosystem II. The S(3) state is first formed with two flashes at pH 6. Thereafter, the pH is changed in the dark prior to freezing of the sample. The EPR signal is 90-100 G wide and centered around g = 2. The signal is reversibly induced with a pK = 8.5 +/- 0.3 and is very stable with a decay half-time of 5-6 min. If the pH is changed in the dark from pH 8.6 to 6.0, the signal disappears although the S(3) state remains. We propose that the signal arises from the interaction between the Mn cluster and Y(Z), resulting in the spin-coupled S(2)Y(Z)(*) signal. Our data suggest that the potential of the Y(Z)(*)/Y(Z) redox couple is sensitive to the ambient pH in the S(3) state. The alkaline pH decreases the potential of the Y(Z)(*)/Y(Z) couple so that Y(Z) can give back an electron to the S(3) state, thereby obtaining the S(2)Y(Z)(*) EPR signal. The tyrosine oxidation also involves proton release from Y(Z), and the results support a mechanism where this proton is released to the bulk medium presumably via a close-lying base. Thus, the equilibrium is changed from S(3)Y(Z) to S(2)Y(Z)(*) by the alkaline pH. At normal pH (pH 5.5-7), this equilibrium is set strongly to the S(3)Y(Z) state. The results are discussed in relation to the present models of water oxidation. Consequences for the relative redox potentials of Y(Z)(*)/Y(Z) and S(3)/S(2) at different pH values are discussed. We also compare the pH-induced S(2)Y(Z)(*) signal with the S(2)Y(Z)(*) signal from Ca(2+)-depleted photosystem II.  相似文献   

8.
Zhang C  Styring S 《Biochemistry》2003,42(26):8066-8076
The effect of illumination at 5 K of photosystem II in different S-states was investigated with EPR spectroscopy. Two split radical EPR signals around g approximately 2.0 were observed from samples given 0 and 3 flashes, respectively. The signal from the 0-flash sample was narrow, with a width of approximately 80 G, in which the low-field peak can be distinguished. This signal oscillated with the S(1) state in the sample. The signal from the 3-flash sample was broad, with a symmetric shape of approximately 160 G width from peak to trough. This signal varied with the concentration of the S(0) state in the sample. Both signals are assigned to arise from the donor side of PSII. Both signals relaxed fast, were formed within 10 ms after a flash, and decayed with half-times at 5 K of 3-4 min. The signal in the S(0) state closely resembles split radical signals, originating from magnetic interaction between Y(Z)(*) and the S(2) state, that were first observed in Ca(2+)-depleted photosystem II samples. Therefore, we assign this signal to Y(Z)(*) in magnetic interaction with the S(0) state, Y(Z)(*)S(0). The other signal is assigned to the magnetic interaction between Y(Z)(*) and the S(1) state, Y(Z)(*)S(1). An important implication is that Y(Z) can be oxidized at 5 K in the S(0) and S(1) states. Oxidation of Y(Z) involves deprotonation of the tyrosine. This is restricted at 5 K, and we therefore suggest that the phenolic proton of Y(Z) is involved in a low-barrier hydrogen bond. This is an unusually short hydrogen bond in which proton movement at very low temperatures can occur.  相似文献   

9.
We have applied flash-induced FTIR spectroscopy to study structural changes upon the S(2)-to-S(3) state transition of the oxygen-evolving complex (OEC) in Photosystem II (PSII). We found that several modes in the difference IR spectrum are associated with bond rearrangements induced by the second laser flash. Most of these IR modes are absent in spectra of S(2)/S(1), of the acceptor-side non-heme ion, of Yradical(D)/Y(D) and of S(3)'/S(2)' from Ca-depleted PSII preparations. Our results suggest that these IR modes most likely originate from structural changes in the oxygen-evolving complex itself upon the S(2)-to-S(3) state transition in PSII.  相似文献   

10.
Rhodothermus marinus, a thermohalophilic gram negative bacterium, contains a type I NADH/quinone oxidoreductase (complex I). Its purification was optimized, yielding large amounts of pure and active protein. Furthermore, the stoichiometry of NADH oxidation and quinone reduction was shown to be 1:1. The large amounts of protein enabled a thorough characterization by electron paramagnetic resonance (EPR) spectroscopy at different temperatures and microwave powers, using NADH, NADPH, and dithionite as reducing agents. A minimum of two [2Fe-2S](2+/1+) and four [4Fe-4S](2+/1+) centers were observed in the purified complex. Redox titrations monitored by EPR spectroscopy made possible the determination of the reduction potentials of the iron-sulfur centers; with the exception of one of the [4Fe-4S](2+/1+) centers, which has a lower reduction potential, all the other centers have reduction potentials of -240 +/- 20 mV, pH 7.5.  相似文献   

11.
Ioannidis N  Petrouleas V 《Biochemistry》2002,41(30):9580-9588
The water-oxidizing complex of photosystem II cycles through five oxidation states, denoted S(i)() (i = 0-4), during water oxidation to molecular oxygen, which appears at the (transient) S(4) state. The recent detection of bimodal EPR signals from the S(3) state [Matsukawa, T., Mino, H., Yoneda, D., Kawamori, A. (1999) Biochemistry 38, 4072-4077] has drawn significant attention to this critical state. An interesting property of the S(3) state is the sensitivity to near-IR (NIR) light excitation. Excitation of the S(3) state by near-IR light at cryogenic temperatures induces among other signals a derivative-shaped EPR signal at g= 5 [Ioannidis, N., and Petrouleas, V. (2000) Biochemistry 39, 5246-5254]. The signal bears unexpected similarities to a signal observed earlier in samples that had undergone multiple turnovers and subsequently had been stored at 77 K for a week or longer [Nugent, J. H. A., Turconi, S., and Evans, M. C. W. (1997) Biochemistry 36, 7086-7096]. Recently, both signals were assigned to an S = 7/2 configuration of the Mn cluster [Sanakis, Y., Ioannidis, N., Sioros, G., and Petrouleas, V. (2001) J. Am. Chem. Soc. 123, 10766-10767]. In the present study, we employ bimodal EPR spectroscopy to investigate the pathways of formation of this unusual state. The following observations are made: (i) The g = 5 signal evolves in apparent correlation with the diminution of the S(3) state signals during the slow (tens of hours to several days range) charge recombination of S(3) with Q(A)(-) at 77 K. The tyrosyl radical D* competes with S(3) for recombination with Q(A)(-), the functional redox couple at cryogenic temperatures inferred to be D*/D(-). Transfer to -50 degrees C and above results in the relaxation of the g = 5 to the multiline and g = 4.1 signals of the normal S(2) state. (ii) The transition of S(3) to the state responsible for the g = 5 signal can be reversed by visible light illumination directly at -30 degrees C or by illumination at 4.2 K followed by brief (2 min) transfer to -50 degrees C in the dark. The latter step is required in order to overcome an apparent thermal activation barrier (charge recombination appears to be faster than forward electron transfer at 4.2 K). (iii) The "g = 5" state can be reached in a few tens of minutes at 4.2 K by near-IR light excitation of the S(3) state. This effect is attributed to the transfer of the positive hole from the Mn cluster to a radical (probably tyr Z), which recombines much faster than the Mn cluster with Q(A)(-). (iv) The above properties strongly support the assignment of the configuration responsible for the g = 5 signal to a modified S(2) state, denoted S(2)'. Evidence supporting the assignment of the S(2)' to a proton-deficient S(2) configuration is provided by the observation that the spectrum of S(2) at pH 8.1 (obtained by illumination of the S(1) state at -30 degrees C) contains a g = 5 contribution.  相似文献   

12.
The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at both Mn nuclei. The features that distinguish the multiline from the EPR spectra of model manganese dimer complexes (additional width of the spectrum (195 mT), additional peaks (22), internal "superhyperfine" structure) are plausibly explained assuming an unusual ligand geometry at both Mn nuclei, giving rise to normally forbidden transitions from quadrupole interactions as well as hyperfine anisotropy. The fitted parameters indicate that the hyperfine and quadrupole interactions arise from Mn ions in low symmetry environments, corresponding approximately to the removal of one ligand from an octahedral geometry in both cases. For a quadrupole interaction of the magnitude indicated here to be present, the MnIII ion must be 5-coordinate and the MnIV 5-coordinate or possibly have a sixth, weakly bound ligand. The hyperfine parameters indicate a quasi-axial anisotropy at MnIII, which while consistent with Jahn-Teller distortion as expected for a d4 ion, corresponds here to the unpaired spin being in the ligand deficient, z direction of the molecular reference axis. The fitted parameters for MnIV are very unusual, showing a high degree of anisotropy not expected in a d3 ion. This degree of anisotropy could be qualitatively accounted for by a histidine ligand providing pi backbonding into the metal dxy orbital, together with a weakly bound or absent ligand in the x direction.  相似文献   

13.
Hanley J  Sarrou J  Petrouleas V 《Biochemistry》2000,39(50):15441-15445
The central part of the oxygen-evolving complex of photosystem II is a cluster of four manganese atoms. The known EPR spectra in the various oxidation states of the cluster are complicated by the magnetic interactions of the four Mn ions and accordingly are difficult to analyze. It has been shown recently that NO at -30 degrees C slowly reduces the cluster to a Mn(II)-Mn(III) state [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587). We study herein the orientation dependence of the Mn(II)-Mn(III) EPR spectrum with respect to the thylakoid membrane plane. Both the powder and the oriented spectra are satisfactorily simulated with the same set of fine and hyperfine parameters assuming axial symmetry and collinear g and A tensors. The axial component of the tensors is found to be oriented at an angle of 20 degrees +/- 10 degrees to the membrane plane normal (mosaic spread Omega = 40 degrees ). We make the reasonable assumption that the Mn(II)-Mn(III) dimer is one of the di-mu-oxo units that has been suggested to comprise the Mn tetramer. On the basis of the sign of the hyperfine tensor anisotropy, the axial direction is assigned to the d(z(2)) orbital of Mn(III), which by comparison with synthetic model complexes is assumed to be oriented perpendicular to the Mn-(mu-oxo)-Mn plane. The present results complement earlier orientation studies by EXAFS and suggest that the Mn-(mu-oxo)-Mn plane makes a small angle (approximately 20 degrees) with the membrane plane and the axis connecting the bridging oxygens is approximately parallel to the plane.  相似文献   

14.
15.
Geijer P  Deák Z  Styring S 《Biochemistry》2000,39(23):6763-6772
We have studied the pH effect on the S(0) and S(2) multiline electron paramagnetic resonance (EPR) signals from the water-oxidizing complex of photosystem II. Around pH 6, the maximum signal intensities were detected. On both the acidic and alkaline sides of pH 6, the intensities of the EPR signals decreased. Two pKs were determined for the S(0) multiline signal; pK(1) = 4.2 +/- 0.2 and pK(2) = 8.0 +/- 0.1, and for the S(2) multiline signal the pKs were pK(1) = 4.5 +/- 0.1 and pK(2) = 7.6 +/- 0.1. The intensity of the S(0)-state EPR signal was partly restored when the pH was changed from acidic or alkaline pH back to pH approximately 6. In the S(2) state we observed partial recovery of the multiline signal when going from alkaline pH back to pH approximately 6, whereas no significant recovery of the S(2) multiline signal was observed when the pH was changed from acidic pH back to pH approximately 6. Several possible explanations for the intensity changes as a function of pH are discussed. Some are ruled out, such as disintegration of the Mn cluster or decay of the S states and formal Cl(-) and Ca(2+) depletion. The altered EPR signal intensities probably reflect the protonation/deprotonation of ligands to the Mn cluster or the oxo bridges between the Mn ions. Also, the possibility of decreased multiline signal intensities at alkaline pH as an effect of changed redox potential of Y(Z) is put forward.  相似文献   

16.
Debije, M. G. and Bernhard, W. A. Electron Paramagnetic Resonance Evidence for a C3' Sugar Radical in Crystalline d(CTCTCGAGAG) X-Irradiated at 4 K. Radiat. Res. 155, 687-692 (2001). A neutral sugar radical formed by the net loss of hydrogen from C3' has been identified in crystalline DNA X-irradiated at 4 K. Crystals of duplex d(CTCTCGAGAG), known to be of B conformation, were studied using electron paramagnetic resonance (EPR) spectroscopy. The C3' radical was identified by using information from dose saturation, power saturation, thermal annealing, and spectrum simulation. The yield of the C3' radical, G(C3'), is 0.03 +/- 0.01 micromol/J, and its concentration does not appear to saturate up to at least 100 kGy. In the region in which total radical concentration increases linearly with dose, the C3' radical makes up about 4.5% of the total radical population trapped in the oligodeoxynucleotide crystal at 4 K. Based on free base release measured in other oligodeoxynucleotides, we suggest that in d(CTCTCGAGAG) the C3' radical is responsible for about one-third of the strand breakage events.  相似文献   

17.
18.
Ribonucleotide reductases (RNR; EC 1.17.4.1) provide the 2′-deoxyribonucleotides for DNA replication of proliferating cells by a uniform radical mechanism using diverse metals. The native metallo-cofactor of the Corynebacterium glutamicum RNR contains manganese and is sensitive to EDTA and radical scavengers. Hybrid holoenzymes, capable of ribonucleotide reduction, were composed of the small manganese-containing (R2F) and the large catalytic subunit (R1E) from either of the two corynebacterial RNRs. A synthetic peptide deduced from the C-terminal region of the nrdF gene inhibited the C. glutamicum-RNR non-competitively and cross-reacted with the C. ammoniagenes-RNR. The C. glutamicum-R2F has a saturable organic radical signal at g=2.005 detected by electron paramagnetic resonance (EPR) spectroscopy and shows a distinct absorption at 408 nm indicative of a tyrosyl-like organic radical (Y·). Quantification of the metal content revealed 0.06 mol Fe but 0.8 mol Mn per mol R2F-monomer and would thus assign two manganese atoms bound to the dimeric metallo-cofactor, while a distinct enzymatic activity (32 µmol×mg?1×min?1) was observed in the biochemical complementation assay. Divergence of the C. glutamicum-RNR studied here from the prototypical Salmonella typhimurium class 1b enzyme and the Chlamydia trachomatis class Ic enzyme is discussed below.  相似文献   

19.
20.
NADH treatment of complex I at pH 7–8 results in the appearance of electron paramagnetic resonance (epr) signals at x band due to reduced ironsulfur centers 1, 2, 3 and 4, while NADPH treatment gives rise to the appearance of signals due to centers 2 and 3. Similar results are obtained with complex I preparations in which transhydrogenase activity from NADPH to NAD has been >95% inhibited by treatment of the complex with trypsin. At pH 6.5 and in the presence of rotenone, addition of NADPH to complex I or transhydrogenase-inhibited complex I results in partial reduction of iron-sulfur center 1 as well. These and other experiments with reduced 3-acetylpyridine adenine dinucleotide and NADPH + NAD as substrates have suggested that the differences in the reduction of complex I iron-sulfur centers by the above nucleotides are essentially quantitative and related to (a) the dehydrogenation rate of the nucleotides, and (b) autoxidation of complex I components under the epr experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号