首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract To determine if spatial variation in soluble carbon sources along the root coincides with different trophic groups of bacteria, copiotrophic and oligotrophic bacteria were enumerated from bulk soil and rhizosphere samples at 2 cm intervals along wheat roots 2, 3, and 4 weeks after planting. There was a moderate rhizosphere effect in one experiment with soil rich in fresh plant debris, and a very pronounced rhizosphere effect in the second experiment with soil low in organic matter. We obtained wavelike patterns of both trophic groups of bacteria as well as water-soluble total organic carbon (TOC) along the whole root length (60 or 90 cm). TOC concentrations were maximal at the root tip and base and minimal in the middle part of the roots. Oscillations in populations of copiotrophic and oligotrophic bacteria had two maxima close to the root tip and at the root base, or three maxima close to the tip, in the middle section, and at the root base. The location and pattern of the waves in bacterial populations changed progressively from week to week and was not consistently correlated with TOC concentrations or the location of lateral root formation. Thus, the traditional view that patterns in bacterial numbers along the root directly reflect patterns in exudation and rhizodeposition from several fixed sources along the root may not be true. We attributed the observed wavelike patterns in bacterial populations to bacterial growth and death cycles (due to autolysis or grazing by predators). Considering the root tip as a moving nutrient source, temporal oscillations in bacterial populations at any location where the root tip passed would result in moving waves along the root. This change in concept about bacterial populations in the rhizosphere could have significant implications for plant growth promotion and bioremediation. Received: 11 May 1998; Accepted: 4 November 1998  相似文献   

2.
We examined the influence of soil aeration state and plant root presence on the comparative survival of wild-type bacteria and isogenic Tn5 (Nir(sup-)) mutants lacking the ability to synthesize nitrite reductase. Two denitrifying Pseudomonas strains with different nitrite reductase types were used. Enumeration of bacteria in sterile and nonsterile soils was based on differential antibiotic resistance. The validity of the bacterial models studied (i.e., equal growth of wild-type and mutant bacteria under aerobic conditions and significantly better growth of wild-type bacteria under denitrifying conditions) was verified in pure-culture studies. In sterile soil, both strains survived better under aerobic than under anaerobic conditions. The lower efficiency of denitrification than O(inf2) respiration in supporting bacterial growth explained this result, and the physical heterogeneity of soil did not strongly modify the results obtained in pure-culture studies. In nonsterile soil, one of the Pseudomonas strains survived better under anaerobic conditions while the other competed equally with the indigenous soil microflora under aerobic and anaerobic conditions. However, when the Nir(sup-)-to-total inoculant ratios (wild type plus Nir(sup-) mutant) were analyzed, it appeared that the presence of nitrite reductase conferred on both Pseudomonas strains a competitive advantage for anaerobic environment or rhizosphere colonization. This is the first attempt to demonstrate with isogenic nondenitrifying mutants that denitrification can contribute to the persistence and distribution of bacteria in fluctuating soil environments.  相似文献   

3.
The hypothesis that Pinus sylvestris L. root and mycorrhizosphere development positively influences bacterial community-linked carbon source utilization, and drives a concomitant reduction in mineral oil levels in a petroleum hydrocarbon- (PHC-) contaminated soil was confirmed in a forest ecosystem-based phytoremediation simulation. Seedlings were grown for 9 months in large petri dish microcosms containing either forest humus or humus amended with cores of PHC-contaminated soil. Except for increased root biomass in the humus/PHC treatment, there were no other significant treatment-related differences in plant growth and needle C and N status. Total cell and culturable bacterial (CFU) densities significantly increased in both rhizospheres and mycorrhizospheres that actively developed in the humus and PHC-contaminated soil. Mycorrhizospheres (mycorrhizas and extramatrical mycelium) supported the highest numbers of bacteria. Multivariate analyses of bacterial community carbon source utilization profiles (Biolog GN microplate) from different rhizosphere, mycorrhizosphere, and bulk soil compartments, involving principal component and correspondence analysis, highlighted three main niche-related groupings. The respective clusters identified contained bacterial communities from (i) unplanted bulk soils, (ii) planted bulk PHC and rhizospheres in PHC-contaminated soils, and (iii) planted bulk humus and rhizosphere/mycorrhizosphere-influenced humus, and mycorrhizosphere-influenced PHC contaminated soil. Correspondence analysis allowed further identification of amino acid preferences and increased carboxylic/organic acid preferences in rhizosphere and mycorrhizosphere compartments. Decreased levels of mineral oil (non-polar hydrocarbons) were detected in the PHC-contaminated soil colonized by pine roots and mycorrhizal fungi. These data further support our view that mycorrhizosphere development and function plays a central role in controlling associated bacterial communities and their degradative activities in lignin-rich forest humus and PHC-contaminated soils.  相似文献   

4.
AIMS: Denitrification efficiency at 10% salinity was compared with that at 2% salinity. The characteristics of bacterial strains isolated from the denitrification system, where an improvement of denitrification efficiency was observed at a high salinity were investigated. METHODS AND RESULTS: Two continuous feeding denitrification systems for saline solutions of 2% and 10% salinity, were operated. Denitrification efficiency at 10% salinity was higher than that at 2% salinity. The bacterial strains were isolated using the trypticase soy agar (TSA) medium at 30 degrees C. The phylogenetic analysis of 16S rRNA gene sequences of isolates indicated that halophilic species were predominant at 10% salinity. CONCLUSIONS: The improvement of denitrification efficiency at a high salinity was demonstrated. The strains isolated from the denitrifying system with 10% salinity were halophilic bacteria, Halomonas sp. and Marinobacter sp., suggesting that these bacteria show a high denitrifying activity at 10% salinity. SIGNIFICANCE AND IMPACT OF THE STUDY: The long-term acclimated sludge used in this study resulted in high denitrification performance at a high salinity, indicating that the design of a high-performance denitrification system for saline wastewater will be possible.  相似文献   

5.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   

6.
Persistence of Denitrifying Enzyme Activity in Dried Soils   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of air drying soil on denitrifying enzyme activity, denitrifier numbers, and rates of N gas loss from soil cores were measured. Only 29 and 16% of the initial denitrifying enzyme activity in fresh, near field capacity samples of Maury and Donerail soils, respectively, were lost after 7 days of air drying. The denitrifying activity of bacteria added to soil and activity recently formed in situ were not stable during drying. When dried and moist soil cores were irrigated, evolution of N gas began, and it maximized sooner in the dried cores. This suggests that the persistence of denitrifying enzymes permits accelerated denitrification when dried soils are remoistened. Enzyme activity increased significantly in these waterlogged cores, but fluctuations in enzyme activity were small compared with fluctuations in actual denitrification rate, and enzyme activities were always greater than denitrification rates. Apparent numbers of isolatable denitrifiers (most-probable-number counts) decreased more than enzyme activity as the soils were dried, but after the soils were rewetted, the extent of apparent growth was not consistently related to the magnitude of N loss. We hypothesize that activation-inactivation of existing enzymes by soil O2 is of greater significance in transient denitrification events than is growth of denitrifiers or synthesis of new enzymes.  相似文献   

7.
The bacterial community structure, in situ spatial distributions and activities of nitrifying and denitrifying bacteria in biofilms treating industrial wastewater were investigated by combination of the 16S rRNA gene clone analysis, fluorescence in situ hybridization (FISH) and microelectrodes. These results were compared with the nitrogen removal capacity of the industrial wastewater treatment plant (IWTP). Both nitrification and denitrification occurred in the primary denitrification (PD) tank and denitrification occurred in the secondary denitrification (SD) tank. In contrast, nitrification and denitrification rates were very low in the nitrification (N) tank. 16S rRNA gene clone sequence analysis revealed that the bacteria affiliated with Alphaproteobacteria, followed by Betaproteobacteria, were numerically important microbial groups in three tanks. The many clones affiliated with Alphaproteobacteria were closely related to the denitrifying bacteria (e.g., Hyphomicrobium spp., Rhodopseudomonas palustris, and Rhodobacter spp.). In addition, Methylophilus leisingeri affiliated with Betaproteobacteria, which favorably utilized methanol, was detected only in the SD-tank to which methanol was added. Nitrosomonas europaea and Nitrosomonas marina were detected as the ammonia-oxidizing bacteria affiliated with Betaproteobacteria throughout this plant, although the dominant species of them was different among three tanks. Nitrifying bacteria were mainly detected in the upper parts of the PD-biofilm whereas their populations were low in the upper parts of the N-biofilm. The presence of denitrifying bacteria affiliated with Hyphomicrobium spp. in SD- and N-biofilms was verified by FISH analysis. Microelectrode measurements showed that the nitrifying bacteria present in the N- and PD-biofilms were active and the bacteria present in the SD-biofilm could denitrify.  相似文献   

8.
The quantification of denitrifying bacteria is a component in the further understanding of denitrification processes in the environment. Real-time PCR primers were designed to target two segments of the denitrifier population (cnorB(P) [Pseudomonas mandelii and closely related strains] and cnorB(B) [Bosea, Bradyrhizobium, and Ensifer spp.]) in agricultural soils based on functional cnorB (nitric oxide reductase) gene sequences. Total population numbers were measured using 16S rRNA gene real-time PCR. Two soil microcosm experiments were conducted. Experiment 1 examined the response of the indigenous soil microbial population to the addition of 500 mg/kg glucose-C daily over 7 days in soil microcosms. Changes in the total population were correlated (r = 0.83) between 16S rRNA gene copy numbers and microbial biomass carbon estimates. Members of the cnorB(P) population of denitrifiers showed typical r-strategy by being able to increase their proportion in the total population from starting levels of <0.1% to around 2.4% after a daily addition of 500 mg/kg glucose-C. The cnorB(B) guild was not able to increase its relative percentage of the total population in response to the addition of glucose-C, instead increasing copy numbers only in proportion with the total population measured by 16S rRNA genes. Experiment 2 measured population dynamics in soil after the addition of various amounts of glucose-C (0 to 500 mg/kg) and incubation under denitrifying conditions. cnorB(P) populations increased proportionally with the amount of glucose-C added (from 0 to 500 mg/kg). In soil microcosms, denitrification rates, respiration, and cnorB(P) population densities increased significantly with increasing rates of glucose addition. cnorB(B) guild densities did not increase significantly under denitrifying conditions in response to increasing C additions.  相似文献   

9.
Summary The size of both the denitrifying and the total bacterial population was found to be positively correlated with soil pH, but the denitrifying bacteria were more sensitive to acid environments than the bacterial microflora as a whole. The ecological evidence for a pH effect was supported by studies with individual pure cultures. The estimate of abundance of denitrifying micro-organisms was also affected markedly by the composition of the medium, and an improved medium has been proposed.Marked differences were noted in the nutrition of the bacteria capable of N2 production. In the absence of oxygen, certain strains developed readily using nitrate as the terminal electron acceptor for growth in media with no preformed growth factors, but others required ammonium or growth factors for denitrification to occur.The investigation was supported in part by funds provided by the Sun Oil Company and Cooperative Regional Research Project NE-39. Present address of senior author: Department of Soils, College of Agriculture, University of Phillippines. A gronomy Paper No. 528.  相似文献   

10.
硫化物抑制潮土反硝化过程中氧化亚氮还原的菌群机制   总被引:1,自引:0,他引:1  
【背景】土壤中的反硝化作用形成气态产物N2O和N2,会导致氮素的气态损失,并造成温室效应。硫化物对土壤的N2O还原具有抑制作用,但其对菌群和功能基因的影响机制还不清楚。【目的】研究有无外加碳源情况下,硫化物对反硝化作用中间产物(NO、N2O)的积累、反硝化功能基因(narG、nirS、nirK和nosZ)表达量以及菌群结构的影响。【方法】分别设置不同量葡萄糖(0和1000mg-C/kg干重土壤)和硫化钠(0和150mg-S/kg干重土壤)添加的交叉处理,进行室内微宇宙培养实验,利用自动化培养与实时气体检测系统检测培养过程中NO、N2O和N2的积累量,通过反转录定量PCR测定反硝化功能基因表达量,利用MiSeq技术平台基于16S rRNA基因序列的高通量测序分析样品的菌群结构。【结果】硫化钠的添加显著抑制N2O还原,但是其对于N2O积累量没有显著影响,却显著降低了NO的积累量。硫化钠的添加短时间内在转录水平上显著抑...  相似文献   

11.
Bartoli  Marco  Nizzoli  Daniele  Welsh  David T.  Viaroli  Pierluigi 《Hydrobiologia》2000,431(2-3):165-174
The short-term effects of sediment recolonisation by Nereis succinea on sediment-water column fluxes of oxygen and dissolved inorganic nitrogen, and rates of denitrification, were studied in microcosms of homogenised, sieved sediments. The added worms enhanced oxygen uptake by the sediments, due to the increased surface area provided by the burrow walls and the degree of stimulation was stable with time. Similarly, ammonium fluxes to the water column were stimulated by N. succinea, but declined over the 3 day incubation in all microcosms including the controls. Nitrate fluxes were generally greater in the faunated microcosms, but highly variable with time. Denitrification rates were positively stimulated by N. succinea populations, denitrification of water column nitrate was stimulated 10-fold in comparison to denitrification coupled to nitrification in the sediments. Rates of denitrification of water column nitrate were not significantly different from rates in undisturbed sediment cores with similar densities of N. succinea, whereas rates of coupled nitrification–denitrification were 3-fold lower in the experimental set-up. These results may reflect the relative growth rates of nitrifying and denitrifying bacteria, which allow more rapid colonisation of new burrow surfaces by denitrifier compared to nitrifier populations. The data indicate that recolonisation by burrowing macrofauna of the highly reduced sediments of the Sacca di Goro, Lagoon, Italy, following the annual dystrophic crisis, may play a significant role in the reoxidation and detoxification of the sediments. The increased rates of denitrification associated with the worm burrows, may promote nitrogen losses, but due to the low capacity of nitrifying bacteria to colonise the new burrow structures, these losses would be highly dependent upon water column nitrate concentrations.  相似文献   

12.
The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus.  相似文献   

13.
Mergel  Alexander  Kloos  Karin  Bothe  Hermann 《Plant and Soil》2001,230(1):145-160
The seasonal fluctuations in the concentration of cultured denitrifying and N2-fixing bacteria were followed in an ammonium fertilised and a control soil of a Norway spruce forest near Villingen/Black Forest from December 1994 to August 1998. The horizontal distribution of bacteria in three layers was determined by the MPN-method and by molecular probing (colony hybridisation) using specific 0.4–0.7 kb DNA probes for denitrification steps (narG, nirS, nirK and nosZ) and for N2-fixation (nifH). The data showed that highest bacterial counts and higher numbers of denitrifying and N2-fixing bacteria were generally detectable in the upper (= 5 cm) soil layer and that their amount decreased with soil depth. The concentration of these cultured bacteria showed seasonal fluctuations with highest numbers in autumn/winter/early spring and with low counts in summer. Denitrifying and N2-fixing bacteria amounted to less than 10% of the total number of cultured bacteria determined by the MPN-method. Fertilisation with ammonium did not cause a shift in the population of these bacteria. These findings were corroborated by hybridisation experiments with genomic DNA isolated from the different layers. Strongest DNA–DNA hybridisation band intensities were obtained in the upper soil layer and their intensities decreased with soil depth. Soil samples from Villingen assayed in the laboratory produced N2O (in dependence of nitrate and C2H2 added to the vessels) and utilised this gas with higher activities in the assays with the fertilised soil. It is concluded that molecular techniques can successfully be applied for assessing seasonal fluctuations of bacterial populations in soil. Relative abundance of denitrifying and N2-fixing bacteria can be determined from experiments with DNA isolated from soils. Attempts to transform these results to the total population of soil bacteria on a single cell basis are faced with many uncertainties.  相似文献   

14.
反硝化细菌在污水脱氮中的作用   总被引:6,自引:0,他引:6  
反硝化是在反硝化细菌的作用下,以硝酸盐作为最终电子受体而进行的无氧呼吸过程。从污水脱氮的角度论述反硝化在污水脱氮中的作用、污水脱氮的机理、污水脱氮过程中反硝化作用的影响因素等。从反硝化的角度出发,论述了反硝化细菌的类群、反硝化作用的机理、反硝化细菌细胞中参与反硝化过程的关键酶。另外,还论述了近年来发现的有氧反硝化细菌、自养反硝化细菌及反硝化除磷细菌等方面的研究进展。  相似文献   

15.
自洱海十个点位的沉积物中富集筛选出101株反硝化细菌并从中筛选出1株较强反硝化能力的细菌,命名为EH314。该细菌接触酶(过氧化氢酶)试验、产硫化氢试验和淀粉水解均为阳性,葡萄糖氧化发酵实验结果为氧化菌,产脂酶(Tween 80)试验结果为阴性;初步鉴定该菌为产碱杆菌属细菌;对细菌反硝化能力进行测定发现,菌株EH314能有效地降解水体中的硝酸盐且反硝化可在有氧条件下进行。  相似文献   

16.
Elevated atmospheric CO2 increases aboveground plant growth and productivity. However, carbon dioxide-induced alterations in plant growth are also likely to affect belowground processes, including the composition of soil biota. We investigated the influence of increased atmospheric CO2on bacterial numbers and activity, and on soil microbial community composition in a pasture ecosystem under Free-Air Carbon Dioxide Enrichment (FACE). Composition of the soil microbial communities, in rhizosphere and bulk soil, under two atmospheric CO2 levels was evaluated by using phospholipid fatty acid analysis (PLFA), and total and respiring bacteria counts were determined by epifluorescence microscopy. While populations increased with elevated atmospheric CO2 in bulk soil of white clover (Trifolium repens L.), a higher atmospheric CO2 concentration did not affect total or metabolically active bacteria in bulk soil of perennial ryegrass (Lolium perenne L.). There was no effect of atmospheric CO2 on total bacteria populations per gram of rhizosphere soil. The combined effect of elevated CO2 on total root length of each species and the bacterial population in these rhizospheres, however, resulted in an 85% increase in total rhizosphere bacteria and a 170% increase in respiring rhizosphere bacteria for the two plant species, when assessed on a per unit land area basis. Differences in microbial community composition between rhizosphere and bulk soil were evident in samples from white clover, and these communities changed in response to CO2 enrichment. Results of this study indicate that changes in soil microbial activity, numbers, and community composition are likely to occur under elevated atmospheric CO2, but the extent of those changes depend on plant species and the distance that microbes are from the immediate vicinity of the plant root surface.  相似文献   

17.
Assessment of denitrifying bacterial composition in activated sludge   总被引:2,自引:0,他引:2  
The abundance and structure of denitrifying bacterial community in different activated sludge samples were assessed, where the abundance of denitrifying functional genes showed nirS in the range of 10(4)-10(5), nosZ with 10(4)-10(6) and 16S rRNA gene in the range 10(9)-10(10) copy number per ml of sludge. The culturable approach revealed Pseudomonas sp. and Alcaligenes sp. to be numerically high, whereas culture independent method showed betaproteobacteria to dominate the sludge samples. Comamonas sp. and Pseudomonas fluorescens isolates showed efficient denitrification, while Pseudomonas mendocina, Pseudomonas stutzeri and Brevundimonas diminuta accumulated nitrite during denitrification. Numerically dominant RFLP OTUs of the nosZ gene from the fertilizer factory sludge samples clustered with the known isolates of betaproteobacteria. The data also suggests the presence of different truncated denitrifiers with high numbers in sludge habitat.  相似文献   

18.
The distribution of nitrogen-dissimilative abilities among 317 isolates of fluorescent pseudomonads was studied. These strains were isolated from an uncultivated soil and from the rhizosphere, rhizoplane, and root tissue of two plant species (flax and tomato) cultivated on this same soil. The isolates were distributed into two species, Pseudomonas fluorescens (45.1%) and Pseudomonas putida (40.4%), plus an intermediate type (14.5%). P. fluorescens was the species with the greatest proportion of isolates in the root compartments and the greatest proportion of dissimilatory and denitrifying strains. According to their ability to dissimilate nitrogen, the isolates have been distributed into nondissimilatory and dissimilatory strains, nitrate reducers and true denitrifiers with or without N(inf2)O reductase. The proportion of dissimilatory isolates was significantly enhanced in the compartments affected by flax and tomato roots (55% in uncultivated soil and 90 and 82% in the root tissue of flax and tomato, respectively). Among these strains, the proportion of denitrifiers gradually and significantly increased in the root vicinity of tomato (44, 68, 75, and 94% in uncultivated soil, rhizosphere, rhizoplane, and root tissue, respectively) and was higher in the flax rhizoplane (66%) than in the uncultivated soil. A higher proportion of N(inf2)O reducers was also found in the root compartments. This result was particularly clear for tomato. It is hypothesized that denitrification could be a selective advantage for the denitrifiers in the root environment and that this process could contribute to modify the specific composition of the bacterial communities in the rhizosphere.  相似文献   

19.
To increase the use efficiency of potassium (K) fertilizer, special attention was paid to the dynamics of soil K in the root zone and non-root zone. Difference in K dynamics between yellowish red soil and yellow cinnamon soil under rapeseed (Brassica napus L.)rice (Oryza sativa L.) rotation was studied using a rhizobox system. Results showed that soil water soluble K (Sol-K) and exchangeable K (Ex-K) in the root zone of both soils were reduced in the early stage of rapeseed growth. Along with plant growth and K uptake, soil Sol-K in the inner (0–20 mm to root zone), middle (20–40 mm) and outer (40–60 mm) compartments of the non-root zone of yellowish red soil migrated towards the root zone. As a result, soil Ex-K was transformed into Sol-K. The changes in soil Sol-K and Ex-K in the non-root zone of yellow cinnamon soil were similar to yellowish red soil, and soil non-exchangeable K (Nonex-K) in the root zone also decreased significantly. In the early stage of rice growth, waterlogging promoted diffusion of soil Sol-K from non-root zone to root zone and transformation of Ex-K into Sol-K. Along with the growth of rice and K uptake, soil Ex-K in each compartment of yellowish red soil decreased significantly. Soil Sol-K and Ex-K in the yellow cinnamon soil declined to a certain extent, and then remained unchanged, while soil Nonex-K kept on decreasing. It revealed that the plants first absorbed K in the root zone, of which K reserve was replenished by a gradual diffusion of K from the non-root zone. The closer to the root zone, the greater the contribution to K uptake by plants. Within one rotation cycle, Ex-K and Sol-K in yellowish red soil were the main forms of K available to the plants, and little Nonex-K could be absorbed. However, in the yellow cinnamon soil, Nonex-K was the main form of K available to the plants, followed by Ex-K and Sol-K.  相似文献   

20.
The activity and community structure of methanotrophs in compartmented microcosms were investigated over the growth period of rice plants. In situ methane oxidation was important only during the vegetative growth phase of the plants and later became negligible. The in situ activity was not directly correlated with methanotrophic cell counts, which increased even after the decrease in in situ activity, possibly due to the presence of both vegetative cells and resting stages. By dividing the microcosms into two soil and two root compartments it was possible to locate methanotrophic growth and activity, which was greatest in the rhizoplane of the rice plants. Molecular analysis by denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH) with family-specific probes revealed the presence of both families of methanotrophs in soil and root compartments over the whole season. Changes in community structure were detected only for members of the Methylococcaceae and could be associated only with changes in the genus Methylobacter and not with changes in the dominance of different genera in the family Methylococcaceae. For the family Methylocystaceae stable communities in all compartments for the whole season were observed. FISH analysis revealed evidence of in situ dominance of the Methylocystaceae in all compartments. The numbers of Methylococcaceae cells were relatively high only in the rhizoplane, demonstrating the importance of rice roots for growth and maintenance of methanotrophic diversity in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号