首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic oxidative stress has been causally linked to several neurodegenerative disorders. As sensitivity for oxidative stress greatly differs between brain regions and neuronal cell types, specific cellular mechanisms of adaptation to chronic oxidative stress should exist. Our objective was to identify molecular mechanisms of adaptation of neuronal cells after applying chronic sublethal oxidative stress. We demonstrate that cells resistant to oxidative stress exhibit altered cholesterol and sphingomyelin metabolisms. Stress-resistant cells showed reduced levels of molecules involved in cholesterol trafficking and intracellular accumulation of cholesterol, cholesterol precursors, and metabolites. Moreover, stress-resistant cells exhibited reduced SMase activity. The altered lipid metabolism was associated with enhanced autophagy. Treatment of stress-resistant cells with neutral SMase reversed the stress-resistant phenotype, whereas it could be mimicked by treatment of neuronal cells with a specific inhibitor of neutral SMase. Analysis of hippocampal and cerebellar tissue of mouse brains revealed that the obtained cell culture data reflect the in vivo situation. Stress-resistant cells in vitro showed similar features as the less vulnerable cerebellum in mice, whereas stress-sensitive cells resembled the highly sensitive hippocampal area. These findings suggest an important role of the cell type-specific lipid profile for differential vulnerabilities of different brain areas toward chronic oxidative stress.  相似文献   

2.
Cilostazol is clinically used for the treatment of ischemic symptoms in patients with chronic peripheral arterial obstruction and for the secondary prevention of brain infarction. Recently, it has been reported that cilostazol has preventive effects on atherogenesis and decreased serum triglyceride in rodent models. There are, however, few reports on the evaluation of cilostazol using atherosclerotic rabbits, which have similar lipid metabolism to humans, and are used for investigating the lipid content in aorta and platelet aggregation under conditions of hyperlipidemia. Therefore, we evaluated the effect of cilostazol on the atherosclerosis and platelet aggregation in rabbits fed a normal diet or a cholesterol-containing diet supplemented with or without cilostazol. We evaluated the effects of cilostazol on the atherogenesis by measuring serum and aortic lipid content, and the lesion area after a 10-week treatment and the effect on platelet aggregation after 1- and 10-week treatment. From the lipid analyses, cilostazol significantly reduced the total cholesterol, triglyceride and phospholipids in serum, and moreover, the triglyceride content in the atherosclerotic aorta. Cilostazol significantly reduced the intimal atherosclerotic area. Platelet aggregation was enhanced in cholesterol-fed rabbits. Cilostazol significantly inhibited the platelet aggregation in rabbits fed both a normal diet and a high cholesterol diet. Cilostazol showed anti-atherosclerotic and anti-platelet effects in cholesterol-fed rabbits possibly due to the improvement of lipid metabolism and the attenuation of platelet activation. The results suggest that cilostazol is useful for prevention and treatment of atherothrombotic diseases with the lipid abnormalities.  相似文献   

3.
We investigated the effects of a saturated fat diet on mice lipid metabolism in resident peritoneal macrophages. Male C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet, containing coconut oil (COCO diet), or the control diet, containing soybean oil as fat source. Fat content of each diet was 15% (w/w). Mice were fed for 6 weeks until sacrifice. In plasma of mice fed the COCO diet, the concentration of triglyceride, total cholesterol, HLD- and (LDL+VLDL)-cholesterol, and thiobarbituric acid-reactive substances (TBARS) increased, without changes in phospholipid concentration, compared with the controls. In macrophages of COCO-fed mice, the concentration of total (TC), free and esterified cholesterol, triglyceride, phospholipid (P) and TBARS increased, while the TC/P ratio did not change. The phospholipid compositions showed an increase of phosphatidylcholine and phosphatidylserine + phosphadytilinositol, a decrease of phosphatidylethanolamine, and no change in phosphatidylglycerol. (3)H(2)O incorporation into triglyceride and phospholipid fractions of macrophages increased, while its incorporation into free cholesterol decreased. Incorporation of [(3)H]cholesterol into macrophages of COCO-fed mice and the fraction of [(3)H]cholesterol ester increased. COCO diet produced an increase in myrystic, palmitic and palmitoleic acids proportion, a decrease in linoleic and arachidonic acids and no changes in stearic and oleic acids, compared with the control. Also, a higher relative percentage of saturated fatty acid and a decrease in unsaturation index (p <0.001) were observed in macrophages of COCO-fed mice. These results indicate that the COCO-diet, high in saturated fatty acids, alters the lipid metabolism and fatty acid composition of macrophages and produces a significant degree of oxidative stress.  相似文献   

4.
Epidemiological studies have suggested that repeated weight cycling over time may increase the risk of coronary heart disease. The mechanism involved remains poorly understood, but the change in lipid metabolism during weight cycling has been offered as a possible explanation. The present study investigated the effect of weight cycling on the size and fatty acid composition of rat fat pads as well as serum cholesterol, triglyceride, glucose, insulin, and glucagon in rats. Two consecutive weight cycles were induced by 40% energy restriction followed by ad libitum refeeding of either a moderate-fat (MF; 22% energy) or a high-fat (HF; 45% energy) diet. The lipogenic enzymes, including fatty acid synthase, acetyl-CoA carboxylase, malic enzyme, pyruvate kinase, and lipoprotein lipase in the weight-cycled (WC) rats fed only the HF diet, yielded an overshoot of activities at the end of two weight cycles. These changes were accompanied by an 80% increase in the size of the adipocyte and a 40-50% increase in the size of perirenal and epididymal fat tissues in HF-WC rats. Regardless of whether the rats were fed the HF or MF diet, all WC rats showed a gradual reduction in linoleic and alpha-linolenic acid and an increase in palmitic, palmitoleic, and stearic acid in total body lipid. It is concluded that weight cycling in rats may promote body fatness if an HF diet is consumed and can significantly alter whole body fatty acid balance irrespective of whether they consumed an MF or HF diet. Most importantly, the weight cycling led to an overshoot or fluctuation of serum cholesterol, triglyceride, glucose, insulin, and glucagon. If weight cycling is associated with an increased risk of cardiovascular disease, then, part of the mechanism may involve the changes in these risk factors.  相似文献   

5.
6.
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.  相似文献   

7.
The effects of taurine supplementation on the serum cholesterol levels and the progression of atherosclerosis were investigated in the hyperlipidemia- and atherosclerosis-prone Japanese (LAP) quail. The ingestion of a high-cholesterol diet containing 1% cholesterol by LAP quails for 60 days resulted in a marked elevation in serum non-HDL cholesterol and triglyceride, as well as severe aortic lesions with lipid droplets. An immunohistochemical study showed that the lesion consisted of mainly lipid-rich macrophages and T cells. Sixty-day taurine supplementation (1% in drinking tap water) to LAP quails fed high-cholesterol diet containing 1% cholesterol significantly reduced serum non-HDL cholesterol from 4,549 to 2,350 mg/dl. The serum triglyceride level also decreased after taurine supplementation from 703 to 392 mg/dl. Although the HDL cholesterol level significantly decreased due to the high-cholesterol diet, it recovered to the control level fed a regular diet in response to taurine. Bile acid production was stimulated and hepatic cholesterol was reduced by taurine supplementation. A quantitative analysis using aortic cross-sections showed that areas of oil-red O positive lipid accumulation significantly decreased by 74% after taurine supplementation. These results demonstrated the lipid-lowering and anti-atherosclerotic effects of taurine in a diet-induced hyperlipidemic LAP quail model. The prevention of atherosclerosis by taurine is mainly attributed to an improvement in the serum cholesterol and triglyceride levels, which may be related to changes in the hepatic cholesterol metabolism.  相似文献   

8.
Effect of coconut protein in rats fed high fat cholesterol containing diet on the metabolism of lipids and lipid peroxides was studied. In addition, effect of coconut protein were compared with rats fed L-arginine. The results indicate that those fed coconut protein and those fed L-arginine showed significantly lower levels of total cholesterol, LDL+ VLDL cholesterol, Triglycerides and Phospholipids in the serum and higher levels of serum HDL cholesterol. The concentration of total cholesterol, triglycerides and phospholipids in the tissues were lower in these groups. There was increased hepatic cholesterogenesis which is evident from the higher rate of incorporation of labeled acetate into free cholesterol. Increased conversion of cholesterol to bile acids and increased fecal excretion of bile acids were observed. Feeding coconut protein results in decreased levels of Malondialdehyde in the heart and increased activity of Superoxide dismutase and Catalase. Supplementation of coconut protein causes increased excretion of urinary nitrate which implies higher rate of conversion of arginine into nitric oxide. In the present study, the arginine supplemented group and the coconut protein fed group produced similar effects. These studies clearly demonstrate that coconut protein is able to reduce hyperlipidemia and peroxidative effect induced by high fat cholesterol containing diet and these effects are mainly mediated by the L-arginine present in it.  相似文献   

9.
摘要 目的:观察单纯性肥胖儿童经有氧运动、低能量平衡膳食联合干预后,机体体脂代谢、胰岛素抵抗及氧化应激反应的变化。方法:选择2019年8月~2021年7月期间新疆医科大学第一附属医院接收的单纯性肥胖儿童93例,将纳入的患儿根据随机数字表法分为对照组和研究组,各为46例和47例。对照组患儿接受低能量平衡膳食干预,研究组患儿接受低能量平衡膳食联合有氧运动干预。对比两组体脂代谢、胰岛素抵抗、血脂及氧化应激反应相关指标变化情况。结果:研究组干预12周后体质量指数(BMI)、甘油三酯(TG)、体脂含量、总胆固醇(TC)、体脂率、腰臀比、空腹胰岛素(FINS)、低密度脂蛋白(LDL-C)、空腹血糖(FPG)、蛋白质羰基(PC)、C肽、胰岛素抵抗指数(HONA-IR)、丙二醛(MDA)低于对照组(P<0.05)。研究组干预12周后高密度脂蛋白(HDL-C)、超氧化物歧化酶(SOD)高于对照组(P<0.05)。结论:低能量平衡膳食联合有氧运动可促进单纯性肥胖儿童体脂代谢改善,减轻胰岛素抵抗及氧化应激反应,效果确切。  相似文献   

10.
The prevalence of obesity has been rising alarmingly and it has now become a global concern causing an enormous economic burden on the health care system. Obesity is generally linked to complications in lipid metabolism and oxidative stress. The aim of the present study was to investigate the effect of rosuvastatin (10 mg/kg, po) on obesity-induced oxidative stress in high fat-fed Wistar rats. Oral administration of rosuvastatin (10 mg/kg) for 21 days along with high fat diet brought about significant elevation in serum high density lipoprotein and cardiac antioxidant enzymes levels (superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione peroxidase-, glutathione reductase- and glutathione-S-transferase) while decreasing in serum lactate dehydrogenase, apolipoprotein-B, lipids (triglycerides, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and atherogenic index) and cardiac thiobarbituric acid reactive substances levels. The results were comparable with orlistat, a standard antiobesity drug. These preliminary results for the first time demonstrate that administration of rosuvastatin can be beneficial for the suppression of obesity-induced oxidative stress and dyslipidemia in high fat-fed Wistar rats.  相似文献   

11.
PurposeDiets rich in fat and energy are associated with metabolic syndrome (MS). Increased body iron stores have been recognized as a feature of MS. High-fat diets (HFs), excess iron loading and MS are closely associated, but the mechanism linking them has not been clearly defined. We investigated the interaction between dietary fat and dietary Fe in the context of glucose and lipid metabolism in the body.MethodsC57BL6/J mice were divided into four groups and fed the modified AIN-93G low-fat diet (LF) and HF with adequate or excess Fe for 7 weeks. The Fe contents were increased by adding carbonyl iron (2% of diet weight) (LF+Fe and HF+Fe).ResultsHigh iron levels increased blood glucose levels but decreased high-density lipoprotein cholesterol levels. The HF group showed increases in plasma levels of glucose and insulin and insulin resistance. HF+Fe mice showed greater changes. Representative indices of iron status, such hepatic and plasma Fe levels, were not altered further by the HF. However, both the HF and excess iron loading changed the hepatic expression of hepcidin and ferroportin. The LF+Fe, HF and HF+Fe groups showed greater hepatic fat accumulation compared with the LF group. These changes were paralleled by alterations in the levels of enzymes related to hepatic gluconeogenesis and lipid synthesis, which could be due to increases in mitochondrial dysfunction and oxidative stress.ConclusionsHigh-fat diets and iron overload are associated with insulin resistance, modified hepatic lipid and iron metabolism and increased mitochondrial dysfunction and oxidative stress.  相似文献   

12.
Obesity and metabolic syndrome are associated with glomerulosclerosis and proteinuria, but the mechanisms are not known. The purpose of this study was to determine if there is altered renal lipid metabolism and increased expression of sterol regulatory element-binding proteins (SREBPs) in a model of diet-induced obesity. C57BL/6J mice that were fed a high fat, 60 kcal % saturated (lard) fat diet (HFD) developed obesity, hyperglycemia, and hyperinsulinemia compared with those that were fed a low fat, 10 kcal % fat diet (LFD). In contrast, A/J mice were resistant when fed the same diet. C57BL/6J mice with HFD exhibited significantly higher levels of renal SREBP-1 and SREBP-2 expression than those mice with LFD, whereas in A/J mice there were no changes with the same treatment. The increases in SREBP-1 and SREBP-2 expression in C57BL/6J mice resulted in renal accumulation of triglyceride and cholesterol. There were also significant increases in the renal expression of plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), type IV collagen, and fibronectin, resulting in glomerulosclerosis and proteinuria. To determine a role for SREBPs per se in modulating renal lipid metabolism and glomerulosclerosis we performed studies in SREBP-1c(-/-) mice. In contrast to control mice, in the SREBP-1c(-/-) mice with HFD the accumulation of triglyceride was prevented, as well as the increases in PAI-1, VEGF, type IV collagen, and fibronectin expression. Our results therefore suggest that diet-induced obesity causes increased renal lipid accumulation and glomerulosclerosis in C57BL/6J mice via an SREBP-1c-dependent pathway.  相似文献   

13.
Due to similarities in lipid metabolism to those in humans, hamster is considered as a good model for the study of regulatory mechanisms of plasma lipoproteins in response to cholesterol or fatty acid-enriched diet. This model of hyperlipidemia has been modified to produce dyslipidedmia with diabetes complexities by feeding with high fat diet added with 9% (w/w) fructose. Feeding this diet to hamster for 10 days markedly increases plasma levels of triglyceride, cholesterol, fatty acids followed by a significant increase in glycerol, beta lipoproteins, high density lipoprotein, glucose and glycosylated proteins. This model is being used for research and development of lipid lowering drugs with hypoglycemic activity in collaboration with Novo Nordisk, Denmark. The modified high fat diet formulation has now been prepared (Research diet D.99122211) and supplied by Research Diets Inc, Burnswick USA.  相似文献   

14.
The purpose of the study was to assess the influence of dietary iron content on lipid and carbohydrate metabolism and on zinc and copper status in rats fed with a diet high in fat, fructose, and salt. Wistar rats were fed with diets high in fat, fructose, and salt, containing differing amounts of iron, namely, deficit, normal, and high levels. After 6 weeks, the animals were weighed and killed. The liver, heart, and pancreas were collected, as were blood samples. The total cholesterol, triglycerides, fasting glucose, and insulin levels in the serum were measured. The iron, zinc, and copper concentrations in tissues and serum were determined. It was found that in rats fed with the iron-deficit diet, cholesterol and glucose profiles improved. Both deficit and excess iron in the diet decreased insulin concentration in rats and disturbed iron, zinc, and copper status. High-iron level in the diet decreased the relative mass of the pancreas. In conclusion, the decrease in serum insulin concentration observed in rats fed with the modified diet high in iron was associated with iron and copper status disorders, and also, with a relatively diminished pancreas mass. A deficit of iron in the diet improved lipid and carbohydrate metabolism in rats.  相似文献   

15.
The influence of three different dietary fats (8%) and of endogenous lipid peroxidation with regard to cholesterol concentrations in liver mitochondria and microsomes and in serum has been investigated in the rat. Although the different diet fat used did not produce any effect on serum cholesterol, it was possible to show that each experimental diet differently influenced the microsomal and mitochondrial levels of cholesterol. The highest mitochondrial and microsomal cholesterol content was found in case of diet supplemented with virgin olive oil and the lowest with rectified olive oil. An endogenous oxidative stress induced by adriamycin was able to produce a clear decrease in microsomal and mitochondrial cholesterol level and a sharp increase in serum concentration in all three groups. However, dietary fats and adriamycin had no effect on the microsomal and mitochondrial membrane viscosity as detected by fluorescence polarization. These results are consistent with the hypothesis that mitochondrial and microsomal cholesterol can exchange with exogenous pools when phospholipid peroxidation occurs.  相似文献   

16.
Dairy products are important sources of dietary fat in India. Anhydrous milk fat, viz., ghee, is consumed as such in the diet and also is used for frying the dishes. Ghee contains high levels of saturated fatty acids and cholesterol, which are considered risk factors for cardiovascular diseases. In the present study, ghee, at levels ranging from 0.25 to 10%, was included in a nutritionally balanced AIN-76 diet fed to Wistar rats for a period of 8 weeks. The serum lipid profiles of these animals showed a dose dependent decrease in total cholesterol, low density lipoproteins and very low density lipoproteins cholesterol, and triglyceride levels when ghee was present at levels greater than 2.5% in the diet. Liver cholesterol and triglycerides also were decreased in these animals. When ghee was included as a sole source of fat at a 10% level, polyunsaturated fatty acids in the serum and liver lipids were reduced significantly. Similar results were observed when ghee was subjected to a higher temperature (120 degrees C) to generate cholesterol oxidation products and fed to the animals. Although cholesterol oxidation products were not accumulated in serum, significant amounts were accumulated in liver only when ghee was fed as a sole source of fat at a 10% level. This study revealed that the consumption of ghee up to a 10% level in the diet altered blood lipid profiles in such a manner as not to elevate the risk factors for cardiovascular diseases.  相似文献   

17.
The effect of feeding microbial gum on lipid metabolism and antioxidative status in high fat-fed C57BL/6N mice was investigated. The animals were randomly divided and fed with a normal control diet (NC group), a high fat diet (HF group), or a high fat diet supplemented with microbial gum (HFG group) for 7 weeks. At the end of the experimental period, the HF mice exhibited a marked increase in body weight, plasma and hepatic total cholesterol levels, and lipid peroxidation rate. Reduced activities of hepatic lipogenic and antioxidant enzymes were also observed in the HF group relative to that of the NC group. In contrast, feeding microbial gum counteracted the high fat diet-induced body weight gain, hypercholesterolemia, and oxidative stress by regulating antioxidant and lipogenic enzyme activities. These findings illustrate that microbial gum possess cholesterol-lowering action and antioxidant status-improving ability and may be useful for preventing and treating high fat diet-induced obesity and possibly reduce the risk of obesity-related diseases.  相似文献   

18.
High cholesterol, especially LDL cholesterol, has been associated with the development of atherosclerotic plaques in arteries. To investigate the changes in cellular substrate metabolism early in the atherogenic process, Sinclair miniature swine were treated for 12 weeks with either a control diet, a high fat diet, or a high fat diet with the addition of alloxan to induce diabetes. The fractional entry into the TCA cycle of 1,2-13C-acetate (5 mM), 1-13C-glucose (5 mM), and unlabeled, endogenous lipids was determined in control, hyperlipidemic, and diabetic/ hyperlipidemic pigs using 13C-isotopomer analysis of glutamate. The diabetic state of the pigs was validated by plasma glucose measurements made after 10 weeks of alloxan treatment for control (65 ± 6 mg/dL), hyperlipidemic (63 ± 5 mg/dL), and diabetic/hyperlipidemic (333 ± 52 mg/dL) pigs. Plasma glucose values did not correlate with the percentage of glucose entry into the TCA cycle (R2 = 0.0819, n = 10). Alterations in the pattern of substrate oxidation were better correlated with changes in plasma lipids (cholesterol and triglycerides) than with changes in plasma glucose. Plasma total cholesterol and total triglyceride levels significantly correlated with changes in acetate metabolism (R2 = 0.7768 and R2 = 0.4787, respectively) and with changes in glucose metabolism (R2 = 0.6067 and R2 = 0.4506, respectively). We conclude that alterations in lipid profile, especially those that were observed in the diabetic milieu, are associated with early changes in vascular smooth muscle oxidative metabolism. These changes in oxidative metabolism may precede alterations in smooth muscle phenotype and, therefore, may play an important role in the early pathogenesis of atherosclerosis.  相似文献   

19.
BackgroundIt has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms.ObjectiveThis study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice.MethodsMale C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined.ResultsDietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels.ConclusionDietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect.  相似文献   

20.
Obesity is frequently associated with consumption of high amounts of sugar and/or fat. Studies have demonstrated a high prevalence of overweight and obesity associated or not with increase rates of psychiatry disorders, in particular mood and anxiety disorders. Recent works have demonstrated an association between specific genes involved in oxidative stress metabolism and anxiety-like behavior. The aim of this study was to investigate the effect of a highly palatable diet enriched with sucrose in body fat mass composition, anxiety behavior and brain oxidative status. Twenty male Wistar rats received two different diets during four months: standard chow (SC) and highly palatable (HP). Metabolic parameters, behavioral tests and oxidative stress status were evaluated. Body fat mass, insulin sensitivity and glucose tolerance were altered in the HP group (p<0.01). The same group spends less time in light compartment and had a lower risk assessment behavior (p<0.05) but no differences were observed in the open field test habituation (p>0.05). Protein degradation, DCF and TBARS levels were not different in the hippocampus between groups; however, there were higher levels of protein degration in frontal cortex of HP groups (p<0.05), although DCF and TBARS levels don't differ from the SC group (p>0.05). In conclusion, our data suggest that the consumption of HP diet leads to an obese phenotype, increases protein oxidation in frontal cortex and appears to induce anxiety-like behavior in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号