首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achenes of Lactuca saliva L. cv. Grand Rapids, imbibed for 6 h in water or in a 10 µ M solution of non-radioactive abscisic acid (ABA), were cultivated on (2-14C]-ABA (10 µ M ) for 40 to 90 h. Red irradiation (660 ± 2.5 nm, 5 min, 2 W m -2) or removal of integuments were carried out before transfer to (2-14C]-ABA. When both treatments were applied, irradiation preceded removal of integuments. Imbibition and culture took place in darkness at 24°C. Two acidic diethyl ether phases, which contained the free acids (free phase) and the acids released after mild alkaline hydrolysis, respectively, were isolated. They were analyzed by thin layer chromatography (TLC). as well as the remaining aqueous phase.
Both red irradiation and removal of integuments led to increased [2-14C|-ABA uptake. Application of ABA during imbibition partly limited the stimulating effect of red irradiation on radioactive ABA uptake. Red irradiation stimulated [2-14C|-ABA metabolism by achenes, favouring the formation of the polar compound found in the remaining aqueous phase. Removal of the integuments stimulated metabolism notably, leading to an increase of the radioactivity in the remaining aqueous phase. This treatment also induced the appearance of new metabolites in the free phase (compound believed to be 7'-hydroxy-ABA) as well as in the remaining aqueous phase. The glucose ester of ABA was the only representative compound of the ester phase. Irrespective of the experimental conditions, there was no classical oxidative metabolism indicating that oxygen was not the limiting factor.  相似文献   

2.
The pattern of incorporation of label into the nucleotides of axillary bud ribonucleic acid was investigated in Pisum sativum L. cv. Meteor following the application of N 6[8-I4C]furfuryladenine or of [8-14C]adenine to the root system of decapitated plants and to cultured excised buds. When N 6[8-14C]furifaryladenine was applied to the root system label was confined to the guanine nucleotide moiety of the axillary bud ribonucleic acid; label from [8-14C]adenine was incorporated preferentially into adenine nucleotide in the molar ratio adenine nucleotide/guanine nucleotide = 3.23. When isolated buds were incubated in media containing [8-14C]adenine or N 6[8-14C]furfuryladenine, label was incorporated into both purine moieties of the ribonucleic acid. However, the relative incorporation into the guanine nucleotide fraction was considerably greater for N 6[8-I4C]furfuryladenine (adenine nucleotide/guanine nucleotide = 2.23) than for [8-14C]adenine (ratio = 4.67).
It was concluded that the pattern of metabolism of adenine to guanine and its incorporation into the guanine nucleotide moiety of pea axillary bud ribonucleic acid, is influenced by the presence of a substitution in the N 6 position of the adenine base.  相似文献   

3.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

4.
Abstract The biosynthesis of the positional isomers of the monounsaturated fatty acids of Methylococcus capsulatus (Bath) has been investigated by studying the incorporation of [2-14C]malonyl CoA into long-chain fatty acids in vitro. The major unsaturated products were Δ 9 16:1 and Δ 11 18:1; however, Δ 8, Δ 10 and Δ 11 16:1, as well as, Δ 10, Δ 12 and Δ 13 18:1 were also synthesized. The exclusion of O2 from the reaction vessel did not affect the synthesis of unsaturated fatty acids or the double bonds positions. Cerulenin inhibited the synthesis of unsaturated fatty acid more than saturated fatty acid. The use of both [1-14C] octanoate and [1-14C] decanoate as substrate resulted in the synthesis of long-chain fatty acids, however, unsaturates were only synthesized from octanoate. These results imply that the unique positional isomers of M. capsulatus are not synthesized by an aerobic mechanism.  相似文献   

5.
Abstract The degradation of [1-14C]- and [2-14C] propionate to acetate and bicarbonate by the sulfate- reducing bacterium Desulfobulbus propionicus was studied. When [1-14C]propionate was used, more than 95% of the label was recovered in the HCO3 fraction. [2-14C]Propionate was quantitatively converted into labeled acetate of which the methyl and carboxyl group were equally labeled. These results are in accordance with a randomizing route such as the methylmalonyl-CoA pathway for propionate degradation and support earlier evidence for the functioning of this pathway on the basis of enzyme assays.  相似文献   

6.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

7.
Abstract [3-14C]3-Hydroxy-3-methyl-glutaric acid (HMG) was incorporated (0.9%) into pseudomonic acid A when administered to a shaken flask fermentation of Pseudomonas fluorescens 4, 9 and 14 h after inoculation. [2-14C]-Mevalonic acid was not incorporated into pseudomonic acid. Experimental evidence supports the previous deduction that pseudomonic acid biosynthesis might directly involve HMG, an apparently unusual intermediary metabolite in prokaryotes.  相似文献   

8.
Metabolism of indole-3-acetic acid in soybean [ Glycine max (L.) Merr.] was investigated with [1-14C]- and [2-14C]-indole-3-acetic acid (IAA) applied by injection into soybean hypocotyl sections and by incubation with soybean callus. Free IAA and its metabolites were extracted with 80% methanol and separated by high performance liquid chromatography with [3H]-IAA as an internal standard. Metabolism of IAA in soybean callus was much greater than that in tobacco ( Nicotiana tabacum L.) callus used for comparison. High performance liquid chromatography of soybean extracts showed at least 10 metabolite peaks including both decarboxylated and undecarboxylated products. A major unstable decarboxylated metabolite was purified. [14C]-indole-3-methanol (IM) was three times more efficient than [2-14C]-IAA as substrate for producing this metabolite. It was hydrolyzable by β-glucosidase (EC 3.2.1.21), yielding an indole and D-glucose. The indole possessed characteristics of authentic IM. Thus, the metabolite is tentatively identified as indole-3-methanol-β-D-glucopyranoside. The results suggest that soybean tissues are capable of oxidizing IAA via the decarboxylative pathway with indole-3-methanol-glucoside as a major product. The high rate of metabolism of IAA may be related to the observed growth of soybean callus with high concentrations of IAA in the culture medium.  相似文献   

9.
Abstract: The present study was undertaken to determine whether polyunsaturated fatty acid metabolism is affected by high glucose levels in cerebral and retinal microvascular endothelial cells. The metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 was studied in cells previously cultured for 5 days in normal (5 m M ) or high (30 m M ) glucose medium. After incubation of retinal endothelial cells with [3-14C]22:5n-3 in the high glucose condition, the formation of labeled 24:6n-3 and 22:6n-3 was increased, and that of labeled 24:5n-3 was decreased, compared with the normal glucose condition. The changes were found for fatty acids esterified in cellular lipids and those released into the medium. After incubation with [1-14C]18:2n-6, levels of all elongation/desaturation products were increased at the expense of the precursor in retinal endothelial cells cultured in high glucose medium. The changes were primarily found for esterified fatty acids, with the release of n-6 fatty acids being minor in both glucose concentrations. By contrast, high glucose levels did not affect the metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 in cerebral endothelial cells. The changes in metabolic activity of retinal endothelial cells were not reflected in the fatty acid composition. The present data suggest that high glucose can increase the desaturation process in retinal but not cerebral endothelial cells. This may produce some lipid abnormalities in retinal microvasculature and contribute to altered vascular function observed in diabetic retinopathy.  相似文献   

10.
Abstract— Ninhydrin decarboxylation experiments were carried out on the labelled amino acids produced following intraventricular injection of either γ-hydroxy-[1-14C]butyric acid (GHB) or [1-14C] succinate. The loss of isotope (as 14CO2) was similar for both substances. The [1-14C]GHB metabolites lost 75% of the label and the [1-14C] succinate metabolites lost 68%. This observation gives support to the hypothesis that the rat brain has the enzymatic capacity to metabolize [1-14C]GHB to succinate and to amino acids that have the isotope in the carboxylic acid group adjacent to the a-amino group. These results also indicate that the label from [1-14C]GHB does not enter the Krebs cycle as acetate. The specific activity ratio of radiolabelled glutamine to glutamic acid was determined in order to evaluate which of the two major metabolic compartments preferentially metabolize GHB. It was found that for [1-14C]GHB this ratio was 4.20 ± 0.18 (S.E. for n = 7) and for [l-14C]succinate this ratio was 7.71 (average of two trials, 7.74 and 7.69). These results suggest that the compartment thought to be associated with glial cells and synaptosomal structures is largely responsible for the metabolism of GHB. Metabolism as it might relate to the neuropharmacological action of GHB is discussed.  相似文献   

11.
Studies were conducted with radio-labeled indole-3-acetic acid ([2-14C] IAA) and tobacco callus culture ( Nicotiana tabacum L. cv. White Gold) to investigate the mode of action of the herbicide glyphosate (N-phosphonomethylglycine). The tissue was first grown with or without glyphosate for 1 to 14 days and then incubated with [2-14C] IAA for 4 h. Metabolism of [2-14C] IAA in the tissue was studies by solvent fractionation, high performance liquid chromatography and liquid scintillation counting. The tissue grown with 0.2 m M glyphosate had low level of free [2-14C] IAA and high levels of other fractions containing metabolites and conjugates of the labeled IAA. After 1 day of glyphosate treatment the free [2-14C] IAA level in the tissue was reduced by 77% compared to that of the control; after 10 days of treatment the decrease was 96%. The decrease in the free [2-14C] IAA level was not due to inhibition of IAA uptake, but due to enhanced rates of oxidation and conjugate formation of IAA. The increased oxidation of IAA in the treated tissue was not due to a direct effect of glyphosate on IAA-oxidase since glyphosate was inactive on IAA oxidation in a cell-free system in vitro. The glyphosate-induced growth inhibition was partially overcome by addition of 1 μ M 2,4-dichlorophenoxyacetic acid to the medium. The results lead to the conclusion that glyphosate inhibits growth by depletion of free IAA through rapid acceleration of both conjugate formation and oxidative degradation of IAA.  相似文献   

12.
The blood–brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the CNS. As most fatty acids in the brain enter from the blood, we examined the mechanism of oleate (C18:1) transport across primary human brain microvessel endothelial cells (HBMEC). The permeability of [1-14C]oleate was determined using confluent cells grown on Transwell® inserts in both the absence or presence of bovine serum albumin in the basolateral media, and following inhibition of various fatty acid transporters. The passage of [1-14C]oleate across confluent HBMEC monolayers was significantly enhanced when fatty acid free albumin was present in the basolateral media. The presence of the non-specific fatty acid uptake inhibitor phloretin significantly decreased [1-14C]oleate uptake by HBMEC and the subsequent release of [1-14C]oleate into the basolateral medium. Knockdown of fatty acid transport protein-1 or fatty acid translocase/CD36 significantly decreased [1-14C]oleate transport across the HBMEC monolayer from either apical as well as basolateral sides. The findings indicate that a fatty acid acceptor is a requirement for oleate transport across HBMEC monolayers. In addition, transport of oleate across HBMEC is, in part, a transcellular process mediated by fatty acid transport proteins.  相似文献   

13.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

14.
Abstract: The effect of chronic low-level lead (Pb2+) ingestion on the metabolic pathways leading to the acetyl moiety of acetylcholine (ACh) was examined. Cerebral cortex slices, prepared from untreated or Pb2+-exposed rats (600 ppm lead acetate in the drinking water for 20 days), were incubated in Krebs-Ringer bicarbonate buffer with 10 m M glucose and tracer amounts of [6-3H]glucose and either [6-14C]glucose or [3-14C] β -hydroxybutyrate. Altering the concentration of Pb2+ in the drinking water produced a dose-related increase in blood and brain lead levels. When tissue from Pb2+-exposed rats was incubated with mixed-labeled glucose, incorporation into lacate, citrate, and ACh was considerably decreased, although no changes occurred in the 3H/14C ratios. Similar effects of Pb2+ were found when 14C-labeled β -hydroxy-butyrate was substituted for the [14C]glucose. It appears from these data that Pb2+ exerts a generalized effect on energy metabolism and not on a specific step in glucose metabolism. The impairment of glucose metabolism may explain partially the Pb2+-induced changes observed in cholinergic function.  相似文献   

15.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

16.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

17.
Abstract: [14C]Acetyl-CoA was found to react spontaneously with dithiothreitol to give a relatively apolar product which was readily extractable into a butanol-toluene scintillant. This technique was used in a rapid, reproducible assay for rat brain ATP:citrate lyase using [1,5-14C]citrate as substrate. The tissue extract, a 14,000 g supernatant, exhibited a lyase activity of approximately 7 nmol acetyl-CoA produced/min per mg supernatant protein, and was inhibited ≥79% by α-ketoglutaric acid (10 m m ), Cu2+ (1 m m )and Zn2+(1 m m ). [14C]Oxaloacetate, [14C]malate and endogenous citrate synthase were found not to interfere significantly with lyase estimations, but NADH was required in the reaction mixture to inhibit acetyl-CoA hydrolase activity.  相似文献   

18.
Abstract Serial dilutions of methanogenic sludges in propionate medium gave a methanogenic non-acetoclastic enrichment degrading 1 mol of propionate to 1.6 mol of acetate and 0.17 mol of methane, with a transient accumulation of butyrate. NMR recordings showed the conversion of [2-13C]- and [3-13C]-propionate to [3-13C]- and [4-13C]-butyrate, respectively, thus demonstrating a reductive carboxylation of propionate to butyrate. The labelling found in the accumulated acetate and fermentation balances also suggested that reductive carboxylation was the major pathway involved in propionate conversion to acetate.  相似文献   

19.
Abstract: The effects of 3-nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase, on cerebral metabolism were investigated in mice by NMR spectroscopy. 3-NPA, 180 mg/kg, caused a dramatic buildup of succinate. Succinate was labeled 5.5 times better from [1-13C]glucose than from [2-13C]acetate, showing a predominantly neuronal accumulation. [1-13C]Glucose labeled GABA in the C-2 position only, compatible with inhibition of the tricarboxylic acid (TCA) cycle associated with GABA formation, at the level of succinate dehydrogenase. Aspartate was not labeled by [1-13C]glucose in 3-NPA-intoxicated animals. In contrast, [1-13C]glucose labeled glutamate in the C-2, C-3, and C-4 positions showing uninhibited cycling of label in the TCA cycle associated with the large, neuronal pool of glutamate. The labeling of glutamine, and hence GABA, from [2-13C]acetate showed that the TCA cycle of glial cells was unaffected by 3-NPA and that transfer of glutamine from glia to neurons took place during 3-NPA intoxication. The high 13C enrichment of the C-2 position of glutamine from [1-13C]glucose showed that pyruvate carboxylation was active in glia during 3-NPA intoxication. These findings suggest that 3-NPA in the initial phase of intoxication fairly selectively inhibited the TCA cycle of GABAergic neurons; whereas the TCA cycle of glia remained uninhibited as did the TCA cycle associated with the large neuronal pool of glutamate, which includes glutamatergic neurons. This may help explain why the caudoputamen, which is especially rich in GABAergic neurons, selectively undergoes degeneration both in humans and animals intoxicated with 3-NPA. Further, the present results may be of relevance for the study of basal ganglia disorders such as Huntington's disease.  相似文献   

20.
Methanolic extracts of Zea mays L. cv. Fronica root segments which had been incubated in [14C] indole-3-acetie acid were analysed by reverse-phase high-performance liquid chromatography. Metabolism of indole-3-acetic acid was found to be rapid and extensive with at least 11 products apparent after a 2 h incubation. A comparison of metabolites of [1-14C]– and [2-14C] IAA, calculations of 14CO2 evolution, and data on the polarity of products indicated that decarboxylation had not occurred. An average of 34% of the radioactivity remained associated with the indole-3-acetic acid peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号