首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the finding that the mdx mouse diaphragm, in contrast to limb muscles, undergoes progressive degeneration analogous to that seen in Duchenne muscular dystrophy, the relationship between the workload on a muscle and the pathogenesis of dystrophy has remained controversial. We increased the work performed by the mdx mouse diaphragm in vivo by tracheal banding and evaluated the progression of dystrophic changes in that muscle. Despite the establishment of dramatically increased respiratory workload and accelerated myofiber damage documented by Evans blue dye, no change in the pace of progression of dystrophy was seen in banded animals vs. unbanded, sham-operated controls. At the completion of the study, more centrally nucleated fibers were evident in the diaphragms of banded mdx mice than in sham-operated mdx controls, indicating that myofiber regeneration increases to meet the demands of the work-induced damage. These data suggest that there is untapped regenerative capacity in dystrophin-deficient muscle and validates experimental efforts aimed at augmenting regeneration within skeletal muscle as a therapeutic strategy in the treatment of dystrophinopathies.  相似文献   

2.
Transforming growth factor beta (TGF-beta) and connective tissue growth factor (CTGF) have been described to induce the production of extracellular matrix (ECM) proteins and have been reported to be increased in different fibrotic disorders. Skeletal muscle fibrosis is a common feature of Duchenne muscular dystrophy (DMD). The mdx mouse diaphragm is a good model for DMD since it reproduces the muscle degenerative and fibrotic changes. Fibronectin (FN) and proteoglycans (PG) are some of the ECM proteins upregulated in dystrophic conditions. In view of understanding the fibrotic process involved in DMD we have isolated fibroblasts from dystrophic mdx diaphragms. Here we report that regardless of the absence of degenerative myofibers, adult mdx diaphragm fibroblasts show increased levels of FN and condroitin/dermatan sulfate PGs synthesis. Fibroblasts isolated from non fibrotic tissue, such as 1 week old mice diaphragms or skin, do not present elevated FN levels. Furthermore, mdx fibroblast conditioned media is able to stimulate FN synthesis in control fibroblasts. Autocrine TGF-beta signaling was unaltered in mdx cells. When control fibroblasts are exposed to TGF-beta and CTGF, FN increases as expected. Paradoxically, in mdx cells it decreases in a concentration dependent manner and this decrease is not due to a downregulation of FN synthesis. According to this data we hypothesize that a pathological environment is able to reprogram fibroblasts into an activated phenotype which can be maintained through generations.  相似文献   

3.
Mdx mice uniquely recover from degenerative dystrophic lesions by an intense myoproliferative (regenerative) response. To investigate a potential role of endogenous basic fibroblast growth factor (bFGF) in injury-repair processes, we investigated its localization in several striated muscles of mdx and control mice using immunofluorescence labeling with specific antibodies. Basic FGF was localized consistently to the myofiber periphery and nuclei of intact myofibers, as well as in single, dystrophin-positive cells in close association with the myofibers (potential myosatellite cells). In mdx mice, actively degenerating skeletal or cardiac muscle fibers presented intense cytoplasmic anti-bFGF staining prior to mononuclear infiltration. Small regenerating fibers in mdx skeletal muscle exhibited greater bFGF accumulation than adjacent larger myofibers. Strong nuclear anti-bFGF immunolabeling was frequently observed in mdx cardiac myocytes at the borders of necrotic regions. In agreement with differences in intensity of immunolabeling, extracts from slow-twitch muscles contained higher levels of bFGF compared to those from fast-twitch muscles, in both control and mdx mice. In addition, bFGF levels were consistently higher in extracts from all mdx tissues compared to those derived from their control counterparts. Our data suggest that bFGF participates in the degenerative and regenerative responses of striated muscle to dystrophic injury and also indicate a potential involvement of this factor with the physiology of different striated muscles.  相似文献   

4.
Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson’s trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.  相似文献   

5.
Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin Aalpha transgene (CnAalpha) was overexpressed in skeletal muscles of mdx (mdx CnAalpha*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnAalpha* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnAalpha* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnAalpha* than mdx mice. In the diaphragm, despite a slower phenotype and a approximately 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnAalpha* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.  相似文献   

6.
Duchenne muscular dystrophy is caused by defects in the dystrophin gene, and the mdx mouse is the most frequently employed genetic model of this disease. It is well known that different muscle groups do not respond in the same way to dystrophin deficiency. In particular, the mdx mouse diaphragm exhibits severe morphological and functional changes not found in other mdx muscles. Use of early generation adenoviral vectors to deliver genes to the diaphragm in immunocompetent mdx mice has been associated with substantial functional toxicity and a rapid loss of transgene expression. Here we determined the response to dystrophin gene replacement in the mdx diaphragm using a "gutted" adenoviral vector that contains the coding sequence of two full-length dystrophin genes and is deleted of most viral DNA sequences. At 1 wk postdelivery of the vector, 23.6 +/- 4% of total fibers in the injected diaphragm bundle expressed dystrophin at the sarcolemma, which remained stable over the study duration of 30 days without the need for continuous immunosuppression. Treated diaphragms showed a significantly improved resistance to the abnormal force deficits induced by high-stress muscle contractions, the latter being a functional hallmark of dystrophin-deficient muscle. This functional amelioration was achieved despite the presence of mildly increased inflammation (CD4+ and CD8+ lymphocytes) within the vector-treated diaphragms. To our knowledge, this is the first demonstration that a viral vector can achieve reversal of functional abnormalities in the dystrophic diaphragm via therapeutic dystrophin gene transfer without the need for sustained immunosuppressive therapy.  相似文献   

7.
In the mdx mice, lack of dystrophin leads to increases in calcium influx and myonecrosis, followed by muscle regeneration. Synapse elimination is faster in mdx than in controls, suggesting that increases in calcium influx during development could be involved. In the present study, we evaluated whether dystrophic fibers display changes in permeability to Evans Blue Dye (EBD) during development of the neuromuscular junction. EBD is a sensitive label for the early detection of increased myofiber permeability and sarcolemmal damage. After intraperitoneal injection of EBD, sternomastoid (STN) and tibialis anterior (T. anterior) muscles were analyzed with fluorescence microscopy. At 01, 07 and 14 days of age, STN and TA mdx myofibers were not stained with EBD. At 21 days of age, positive labeling of TA and STN mdx myofibers was seen, suggesting permeability modification and myonecrosis. Adult muscles showed a decrease (T. anterior) or no changes (STN) in the amount of EBD-positive fibers. These results suggest that there is no sarcolemmal damage detected by EBD during development of dystrophic neuromuscular junctions and other factors may contribute to the earlier synapse elimination seen in dystrophic muscle.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD.  相似文献   

9.
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.  相似文献   

10.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgenic overexpression of insulin-like growth factor-I (IGF-I) causes myofiber hypertrophy, increases force production, and can improve the dystrophic pathology in mdx mice. In contrast, the predominant effect of continuous exogenous administration of IGF-I to mdx mice at a low dose (1.0-1.5 mg.kg(-1).day(-1)) is a shift in muscle phenotype from fast glycolytic toward a more oxidative, fatigue-resistant, slow muscle without alterations in myofiber cross-sectional area, muscle mass, or maximum force-producing capacity. We found that exogenous administration of IGF-I to mdx mice increased myofiber succinate dehydrogenase activity, shifted the overall myosin heavy chain isoform composition toward a slower phenotype, and, most importantly, reduced contraction-induced damage in tibialis anterior muscles. The deficit in force-producing capacity after two damaging lengthening contractions was reduced significantly in tibialis anterior muscles of IGF-I-treated (53 +/- 4%) compared with untreated mdx mice (70 +/- 5%, P < 0.05). The results provide further evidence that IGF-I administration can enhance the functional properties of dystrophic skeletal muscle and, compared with results in transgenic mice or virus-mediated overexpression, highlight the disparities in different models of endocrine factor delivery.  相似文献   

11.
We have previously reported that CD34(+) cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP(+)/CD34(+) cells or desmin(+)/(-)LacZ/CD34(+) cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.  相似文献   

12.
Dystrophin-deficient skeletal muscles of mdx mice undergo their first rounds of degeneration-regeneration at the age of 14-28 days. This feature is thought to result from an increase in motor activity at weaning. In this study, we hypothesize that if the muscle is prevented from contracting, it will avoid the degenerative changes that normally occur. For this purpose, we developed a procedure of mechanical hindlimb immobilization in 3-wk-old mice to restrain soleus (Sol) and extensor digitorum longus (EDL) muscles in the stretched or shortened position. After a 14-day period of immobilization, the striking feature was the low percentage of regenerated (centronucleated) myofibers in Sol and EDL muscles, regardless of the length at which they were fixed, compared with those on the contralateral side (stretched Sol: 8.4 +/- 6.5 vs. 46.6 +/- 10.3%, P = 0.0008; shortened Sol: 1.2 +/- 1.6 vs. 50.4 +/- 16.4%, P = 0.0008; stretched EDL: 05 +/- 0.5 vs. 32.9 +/- 17.5%, P = 0. 002; shortened EDL: 3.3 +/- 3.1 vs. 34.7 +/- 11.1%, P = 0.002). Total numbers of myofibers did not change with immobilization. This study shows that limb immobilization prevents the occurrence of the first round of myofiber necrosis in mdx mice and suggests that muscle contractions play a role in the skeletal muscle degeneration of dystrophin-deficient mdx mouse muscles.  相似文献   

13.
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10-18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (-70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ~38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14-18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm(2), P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength.  相似文献   

14.
Duchenne muscular dystrophy (DMD) is an X-linked, lethal, degenerative disease that results from mutations in the dystrophin gene, causing necrosis and inflammation in skeletal muscle tissue. Treatments that reduce muscle fiber destruction and immune cell infiltration can ameliorate DMD pathology. We treated the mdx mouse, a model for DMD, with the immunosuppressant drug rapamycin (RAPA) both locally and systemically to examine its effects on dystrophic mdx muscles. We observed a significant reduction of muscle fiber necrosis in treated mdx mouse tibialis anterior (TA) and diaphragm (Dia) muscles 6 wks post-treatment. This effect was associated with a significant reduction in infiltration of effector CD4(+) and CD8(+) T cells in skeletal muscle tissue, while Foxp3(+) regulatory T cells were preserved. Because RAPA exerts its effects through the mammalian target of RAPA (mTOR), we studied the activation of mTOR in mdx TA and Dia with and without RAPA treatment. Surprisingly, mTOR activation levels in mdx TA were not different from control C57BL/10 (B10). However, mTOR activation was different in Dia between mdx and B10; mTOR activation levels did not rise between 6 and 12 wks of age in mdx Dia muscle, whereas a rise in mTOR activation level was observed in B10 Dia muscle. Furthermore, mdx Dia, but not TA, muscle mTOR activation was responsive to RAPA treatment.  相似文献   

15.
Critical to the evaluation of potential therapeutics for muscular disease are sensitive and reproducible physiological assessments of muscle function. Because many pre-clinical trials rely on mouse models for these diseases, isolated muscle function has become one of the standards for Go/NoGo decisions in moving drug candidates forward into patients. We will demonstrate the preparation of the extensor digitorum longus (EDL) and diaphragm muscles for functional testing, which are the predominant muscles utilized for these studies. The EDL muscle geometry is ideal for isolated muscle preparations, with two easily accessible tendons, and a small size that can be supported by superfusion in a bath. The diaphragm exhibits profound progressive pathology in dystrophic animals, and can serve as a platform for evaluating many potential therapies countering fibrosis, and promoting myofiber stability. Protocols for routine testing, including isometric and eccentric contractions, will be shown. Isometric force provides assessment of strength, and eccentric contractions help to evaluate sarcolemma stability, which is disrupted in many types of muscular dystrophies. Comparisons of the expected results between muscles from wildtype and dystrophic muscles will also be provided. These measures can complement morphological and biochemical measurements of tissue homeostasis, as well as whole animal assessments of muscle function.  相似文献   

16.
In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin is related to enhanced calcium influx and muscle degeneration. Stretch-activated channels (SACs) might be directly involved in the pathology of DMD, and transient receptor potential cation channels have been proposed as likely candidates of SACs. We investigated the levels of transient receptor potential canonical channel 1 (TRPC1) and the effects of streptomycin, a SAC blocker, in muscles showing different degrees of the dystrophic phenotype. Mdx mice (18 days old, n = 16) received daily intraperitoneal injections of streptomycin (182 mg/kg body wt) for 18 days, followed by removal of the diaphragm, sternomastoid (STN), biceps brachii, and tibialis anterior muscles. Control mdx mice (n = 37) were injected with saline. Western blot analysis showed higher levels of TRPC1 in diaphragm muscle compared with STN and limb muscles. Streptomycin reduced creatine kinase and prevented exercise-induced increases of total calcium and Evans blue dye uptake in diaphragm and in STN muscles. It is suggested that different levels of the stretch-activated calcium channel protein TRPC1 may contribute to the different degrees of the dystrophic phenotype seen in mdx mice. Early treatment designed to regulate the activity of these channels may ameliorate the progression of dystrophy in the most affected muscle, the diaphragm.  相似文献   

17.
The regeneration of skeletal muscles is a suitable model to study the development and differentiation of contractile tissues. Neural effects are one of the key factors in the regulation of this process. In the present work, effects of different reinnervation protocols (suture or grafting) were studied upon the regenerative capacity of rat soleus muscles treated with the venom of the Australian tiger snake, notexin, which is known to induce complete necrosis and subsequent regeneration of muscles. Morphological and motor endplate analysis indicated that the regenerative capacity of denervated, and thereafter surgically reinnervated muscles remains impaired compared to that of normally innervated muscles, showing differences in the muscle size, fiber type pattern and motor endplate structure, even 35 days after the notexin injection. A lack or deficiency of secreted neural factors, deterioration of satellite cells and/or incomplete recovery of the sutured or grafted nerves may be the cause of these discrepancies in the regeneration process.  相似文献   

18.
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.  相似文献   

19.
Muscle side population (SP) cells have demonstrated hematopoietic and myogenic activities in vivo upon intravenous (IV) injection into lethally irradiated mdx mice. In contrast, muscle main population (MP) cells were unable to rescue the bone marrow of lethally irradiated mice and, consequently, their in vivo myogenic potential could not be assessed using this method. In the current study, muscle SP or MP cells derived from syngeneic wild-type male mice were delivered to sub-lethally irradiated mdx female mice by single or serial IV injections. Recipient mice were euthanized 12 weeks after transplantation at which time the quadriceps and diaphragm muscles were analyzed for the presence of donor-derived cells. Mice injected with 10(4) muscle SP cells or with 10(6) MP cells appeared to have similar numbers of dystrophin-positive myofibers containing fused donor nuclei. Analysis of the remaining tissue via real-time quantitative PCR indicated that mice injected with muscle SP cells had a higher percentage of donor-derived Y-DNA in the quadriceps than mice injected with MP cells, suggesting that muscle SP cells may be enriched for progenitors able to engraft dystrophic skeletal muscles from the circulation. Although the overall engraftment did not reach therapeutically significant levels, these results indicate that further optimization of cell delivery techniques may lead to improved efficacy of cell-mediated therapy using muscle SP cells.  相似文献   

20.
Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2′-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P<0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P<0.05) BrdU labeling in uninjured soleus muscles compared to weightbearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P>0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers. Accepted: 11 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号