首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Protein and amino acid metabolism is abnormal in end-stage renal disease (ESRD). Protein turnover is influenced by transmembrane amino acid transport. The effect of ESRD and hemodialysis (HD) on intracellular amino acid transport kinetics is unknown. We studied intracellular amino acid transport kinetics and protein turnover by use of stable isotopes of phenylalanine, leucine, lysine, alanine, and glutamine before and during HD in six ESRD patients. Data obtained from amino acid concentrations and enrichment in the artery, vein, and muscle compartments were used to calculate intracellular amino acid transport and muscle protein synthesis and catabolism. Fractional muscle protein synthesis (FSR) was estimated by the precursor product approach. Despite a significant decrease in the plasma concentrations of amino acids in the artery and vein during HD, the intracellular concentrations remained stable. Outward transport of the amino acids was significantly higher than the inward transport during HD. FSR increased during HD (0.0521 +/- 0.0043 vs. 0.0772 +/- 0.0055%/h, P < 0.01). Results derived from compartmental modeling indicated that both protein synthesis (118.3 +/- 20.6 vs. 146.5 +/- 20.6 nmol.min-1.100 ml leg-1, P < 0.01) and catabolism (119.8 +/- 18.0 vs. 174.0 +/- 14.2 nmol.min-1.100 ml leg-1, P < 0.01) increased during HD. However, the intradialytic increase in catabolism exceeded that of synthesis (57.8 +/- 13.8 vs. 28.0 +/- 8.5%, P < 0.05). Thus HD alters amino acid transport kinetics and increases protein turnover, with net increase in protein catabolism.  相似文献   

2.
The intracellular concentrations of essential amino acids (EAA) in muscle are maintained relatively constant under a variety of conditions. However, the effect of a decrease in blood amino acid concentrations on intracellular concentrations is not clear. Similarly, the relation between intracellular and interstitial concentrations has not been determined in this circumstance. Thus the aim of this study was to determine the effect of hypoaminoacidemia on intracellular, interstitial, and plasma concentrations of EAA and the mechanisms responsible for the respective changes. Twelve normal pigs were investigated before and during 120 min of hemodialysis by use of stable-isotope tracer methodology, microdialysis technique, and muscle biopsies. During hemodialysis, there was a decrease in the interstitial fluid concentrations of phenylalanine, leucine, alanine, and lysine that corresponded to their decrease in plasma concentration. Nonetheless, the intracellular concentrations of these amino acids were maintained at the basal levels throughout the entire period due principally to a reduction in the rate of incorporation of amino acids into protein that was approximately equivalent to the decrease in uptake from the plasma. In conclusion, intracellular concentrations of amino acids are regulated to maintain relatively constant values, even when plasma and interstitial concentrations fall as a consequence of hemodialysis.  相似文献   

3.
It was the aim of this study to examine the potential regulatory effects of a long-term low dietary protein supply on the transport capacity of the jejunal brush-border membrane for amino acids. For this purpose, we used the neutral amino acids L-alanine (representative for nonessential amino acids) and L-leucine (representative for essential amino acids) as model substances. Ten sheep lambs, 8 weeks of age and 19-27 kg body weight, were allotted to two dietary regimes with either adequate or reduced protein supply which was achieved by 17.9% and 9.7% of crude protein in the concentrated feed, respectively. The feeding periods were 4-6 weeks in length. Similarly, eight goat kids of 5-7 weeks of age and 8-14 kg body weight were allotted to either adequate (crude protein 20.1%, feeding period 9-12 weeks) or reduced protein supply (10.1%, feeding period 17-18 weeks). Dietary protein reduction in lambs caused a significant body weight loss of 0.6 +/- 0.7 kg, whereas the body weight in control animals increased by 1.9 +/- 0.7 kg (P<0.05). Plasma urea concentrations decreased significantly by 60% (low protein 2.3 +/- 0.1 versus control 5.7 +/- 0.2 mmol l(-1), P<0.001). In kids, reduction of dietary protein intake led to significant decreases of the daily weight gain by 48% from 181 +/- 8 g to 94 +/- 3 g (P<0.001) and daily dry matter intake by 27% from 568 +/- 13 g to 417 +/- 6 g (P<0.01). Respective urea concentrations in plasma were reduced by 77% from 5.2 +/- 0.4 to 1.2 +/- 0.2 mmol l(-1) (P<0.01). Kinetic analyses of the initial rates of alanine uptake into isolated jejunal brush-border membrane vesicles from sheep and goats as affected by low dietary protein supply yielded that the apparent Km was neither significantly different between the species nor significantly affected by the feeding regime thus ranging between 0.12 and 0.16 mmol.l(-1). Reduction of dietary protein, however, resulted in significantly decreased Vmax values of the transport system by 25-30%, irrespective of the species. Kinetic analyses of the initial rates of leucine uptake into jejunal brush-border membrane vesicles from sheep and goats yielded that leucine uptake was mediated by Na+-dependent as well as Na+-independent processes. Similar to alanine, apparent Km values of leucine uptake were neither different between the species nor affected due to low dietary protein and ranged between 0.08 and 0.15 mmol l(-1). In contrast to the alanine transport mechanism, dietary protein reduction resulted in increased Vmax values of Na+-dependent leucine transport by 53% in sheep and 230% in goats. Similarly, Na+-independent leucine uptake was stimulated by 85% and 200% in sheep and in goats, respectively. This study shows adaptation of amino acid absorption at the brush-border membrane level of jejunal enterocytes of small ruminants due to dietary protein reduction. Whereas the transport capacity for the nonessential amino acid alanine was reduced due to low dietary protein, the transport capacity for the essential amino acid leucine was markedly stimulated. From this, the involvement of rather different feedback mechanisms in adaptation of intestinal amino acid transport mechanisms has to be discussed.  相似文献   

4.
Sexual dimorphism in skeletal muscle mass is apparent, with men having more muscle mass and larger individual muscle cells. However, no sex-based differences have been detected in blood forearm phenylalanine turnover, although whole body leucine oxidation has been reported to be greater in men than in women. We hypothesized that sex differences in intracellular amino acid turnover may account for these discrepancies, with men having a higher intracellular turnover than women. We studied young, healthy women (women, n = 8) and men (men, n = 10) following an overnight fast. Phenylalanine, leucine, and alanine muscle intracellular kinetics were assessed using stable isotope methodologies, femoral arteriovenous blood sampling, and muscle biopsies. Muscle intracellular amino acid kinetics were reported relative to both leg volume and lean leg mass because of sex differences in leg volume and in muscle and fat distribution. When expressed per leg volume (nmol.min(-1).100 ml leg volume(-1)), phenylalanine net balance (women: -16 +/- 4, men: -31 +/- 5), release from proteolysis in the blood (women: 46 +/- 9, men: 75 +/- 10) and intracellular availability (women: 149 +/- 23, men: 241 +/- 35), and alanine production, utilization, and intracellular availability were higher in men (P < 0.05). However, when the kinetic parameters were normalized per unit of lean leg mass, all differences disappeared. Muscle fractional synthetic rate was also not different between women and men. We conclude that there are no sex-based differences in basal muscle intracellular amino acid turnover when the data are normalized by lean mass. It remains to be determined if there are sex differences in intracellular amino acid metabolism following anabolic or catabolic stimuli.  相似文献   

5.
Leucine uptake into membrane vesicles from larvae of the midge Chironomus riparius was studied. The membrane preparation was highly enriched in typical brush border membrane enzymes and depleted of other membrane contaminants. In the absence of cations, there was a stereospecific uptake of l-leucine, which exhibited saturation kinetics. Parameters were determined both at neutral (Km 33 +/- 5 microM and Vmax 22.6 +/- 6.8 pmol/7s/mg protein) and alkaline (Km 46 +/- 5 microM and Vmax 15.5 +/- 2.5 pmol/7s/mg protein) pH values. At alkaline pH, external sodium increased the affinity for leucine (Km 17 +/- 1 microM) and the maximal uptake rate (Vmax 74.0 +/- 12.5 pmol/7s/mg protein). Stimulation of leucine uptake by external alkaline pH agreed with lumen pH measurements in vivo. Competition experiments indicated that at alkaline pH, the transport system readily accepts most L-amino acids, including branched, unbranched, and alpha-methylated amino acids, histidine and lysine, but has a low affinity for phenylalanine, beta-amino acids, and N-methylated amino acids. At neutral pH, the transport has a decreased affinity for lysine, glycine, and alpha-methylleucine. Taken together, these data are consistent with the presence in midges of two distinct leucine transport systems, which combine characters of the lepidopteran amino acid transport system and of the sodium-dependent system from lower neopterans.  相似文献   

6.
Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.  相似文献   

7.
The purpose of this study was to assess a novel technique for quantifying in vivo muscle protein metabolism and phenylalanine transport in septic patients and normal volunteers and thereby assess the influence of sepsis on muscle protein kinetics. In patients resuscitated from sepsis, blood flow and edema may influence the extent of muscle loss. Six adult patients septic from pneumonia underwent a study protocol consisting of infusion of isotopic phenylalanine, indocyanine green dye, and sodium bromide; biopsies of skeletal muscle; and sampling from the femoral artery, vein, and interstitial fluid. Study results demonstrate a substantial net catabolism of muscle, an accelerated flux of phenylalanine, and an increased leg blood flow for septic patients compared with normal volunteers. For septic patients and normal volunteers, the rate of phenylalanine transport through the interstitium was rate limiting for the movement of phenylalanine between vasculature and muscle. Measurements demonstrate a concentration gradient of phenylalanine favoring the net efflux of amino acids from the leg in the septic patients. Despite whole body edema, the extracellular fluid volume within muscle of septic patients was similar to normal. These findings demonstrate that the extent of muscle loss in critically ill patients results from the net increase in the rate of muscle protein breakdown, which subsequently drives amino acids through the interstitial compartment down their concentration gradient. Therefore, any effective therapy to correct illness-induced muscle catabolism should be directed at altering the rates of breakdown and synthesis of muscle protein and are not likely related to tissue edema.  相似文献   

8.
The synthesis and release of alanine and glutamine have been studied in the intact rat epitrochlaris skeletal muscle preparation. Aspartate, cysteine, leucine, valine, methionine, isoleucine, serine, theronine, and glycine increased significantly the formation and release of alanine from muscle. Cysteine, leucine, valine, methionine, isoleucine, tyrosine, lysine, and phenylalanine increased the rate of glutamine synthesis. Only ornithine, arginine, and tryptophan were without effect on the synthesis of either alanine or glutamine. Half-maximal stimulation of alanine and glutamine formation by added amino acids was observed with concentrations ranging between 0.5 and 1.0 mM. Increases in alanine and glutamine formation were not accompanied by changes in pyruvate production or glucose uptake. The progressive decline in alanine and glutamine synthesis noted on prolonged incubation was prevented by the addition of amino acids to the incubation medium. Stimulation of alanine synthesis by added amino acids was unaffected by inhibition of glycolysis with iodoacetate. Inhibition of alanine aminotransferase with aminooxyacetate significantly decreased alanine formation. Pyruvate and ammonium chloride did not increase further the rate of either alanine or glutamine formation above that produced by added amino acids. These data indicate that most amino acids are precursors for alanine and glutamine synthesis in skeletal muscle. A general mechanism is presented for the de novo formation of alanine from amino acids in skeletal muscle, and the importance of proteolysis for the supply of amino acid precursors for alanine and glutamine synthesis is discussed.  相似文献   

9.
To investigate the participation of erythrocytes in the blood transport of amino acids during the course of intestinal absorption in humans, erythrocyte and plasma amino-acid concentrations were determined following ingestion of an oral load of amino acids. In addition to baseline plasma and erythrocyte amino acid concentrations in 18 subjects, plasma and erythrocyte amino acids kinetics during the 125 min following an oral amino acid load were further determined in 9 of the 18 subjects. The results showed that human erythrocytes contained most amino acids at similar or higher concentrations than plasma. Furthermore, the correlations observed between plasma and erythrocyte contents clearly indicated that erythrocytes were involved in the transport of amino acids by the blood. For some amino acids erythrocyte transport sometimes exceeded that of plasma. Significant correlation coefficients showed that strong plasma-erythrocyte relationships existed for alanine, valine, methionine, isoleucine, leucine, phenylalanine, and ornithine. In conclusion, our data supported the hypothesis that both blood compartments, plasma and erythrocytes, are involved significantly in the blood transport of amino acids in humans during the postabsorptive state. Accepted: 24 June 1998  相似文献   

10.
Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors.  相似文献   

11.
We have determined the kinetic parameters of natural and system-specific synthetic amino acid transport by human blood lymphocytes, using a multi-component computer analysis that separates carrier-mediated uptake from diffusion. These studies were initiated in order to provide the basis for studies of human blood T and B lymphocytes and malignant lymphocytes. Methylaminoisobutyric acid (methyl-AIB) and 2-amino-2-carboxy-bicyclo (2,2,1) heptane (BCH) uptakes into lymphocytes were measured as prototypes of A- and L-system amino acid transport. The Michaelis constant for methyl-AIB uptake was 540 microM; the maximal velocity of uptake was 28 mumol/L cell water/min, and the diffusion coefficient was .004 min-1. In contrast, the Michaelis constant for BCH uptake was 63 microM; the maximal velocity was 969 mumol/L cell water/min, and the diffusion coefficient was .141 min-1. The transport of the naturally occurring amino acids, alanine, proline, and leucine was defined by studies of: (1) competitive inhibition with the system-specific synthetic amino acids, methyl-AIB and BCH, (2) the effect of the transcellular sodium gradient on transport, and (3) evaluation of the time-dependent increase of transport in amino acid-deficient medium (adaptation). Alanine was transported principally (approximately 70%) by the ASC-system, and leucine was transported principally (70%) by the L-system in lymphocytes. The analysis of proline transport was more complex because of a large component of uptake by diffusion even at low amino acid concentrations. Taken together, the kinetics of sodium-sensitive uptake and the results of competitive inhibition studies indicated that proline was transported by the A-system (30%), the ASC system (30%), and also by the L-system (15%).  相似文献   

12.
The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity.  相似文献   

13.
Alanine and glutamine constitute the two most important nitrogen carriers released from the muscle. We studied the intracellular amino acid transport kinetics and protein turnover in nine end-stage renal disease (ESRD) patients and eight controls by use of stable isotopes of phenylalanine, alanine, and glutamine. The amino acid transport kinetics and protein turnover were calculated with a three-pool model from the amino acid concentrations and enrichment in the artery, vein, and muscle compartments. Muscle protein breakdown was more than synthesis (nmol.min(-1).100 ml leg(-1)) during hemodialysis (HD) (169.8 +/- 20.0 vs. 125.9 +/- 21.8, P < 0.05) and in controls (126.9 +/- 6.9 vs. 98.4 +/- 7.5, P < 0.05), but synthesis and catabolism were comparable pre-HD (100.7 +/- 15.7 vs. 103.4 +/- 14.8). Whole body protein catabolism decreased by 15% during HD. The intracellular appearance of alanine (399.0 +/- 47.1 vs. 243.0 +/- 34.689) and glutamine (369.7 +/- 40.6 vs. 235.6 +/- 27.5) from muscle protein breakdown increased during dialysis (nmol.min(-1).100 ml leg(-1), P < 0.01). However, the de novo synthesis of alanine (3,468.9 +/- 572.2 vs. 3,140.5 +/- 467.7) and glutamine (1,751.4 +/- 82.6 vs. 1,782.2 +/- 86.4) did not change significantly intradialysis (nmol.min(-1).100 ml leg(-1)). Branched-chain amino acid catabolism (191.8 +/- 63.4 vs. -59.1 +/- 42.9) and nonprotein glutamate disposal (347.0 +/- 46.3 vs. 222.3 +/- 43.6) increased intradialysis compared with pre-HD (nmol.min(-1).100 ml leg(-1), P < 0.01). The mRNA levels of glutamine synthase (1.45 +/- 0.14 vs. 0.33 +/- 0.08, P < 0.001) and branched-chain keto acid dehydrogenase-E2 (3.86 +/- 0.48 vs. 2.14 +/- 0.27, P < 0.05) in the muscle increased during HD. Thus intracellular concentrations of alanine and glutamine are maintained during HD by augmented release of the amino acids from muscle protein catabolism. Although muscle protein breakdown increased intradialysis, the whole body protein catabolism decreased, suggesting central utilization of amino acids released from skeletal muscle.  相似文献   

14.
The effect of a pantothenic acid deficiency in Lactobacillus plantarum on the initial rate of amino acid transport was investigated. Although the steady-state accumulation capacity for all amino acids was markedly reduced in pantothenate-deficient cells, initial rates of uptake either were not changed (asparagine, alanine, lysine) or were increased (glutamic acid, aspartic acid, leucine). The findings suggest that a reduction in membrane lipid content heterogeneously affects the operation and/or synthesis of amino acid transport catalysts.  相似文献   

15.
Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes   总被引:3,自引:0,他引:3  
The nutritional role of mouse granulosa cells on antral dictyate mouse oocytes has been studied by measuring the transfer of different amino acids through gap junctional channels between somatic and germ cells. When present in the incubation medium at concentrations resembling in vivo conditions, glycine, alanine, proline, serine, tyrosine, glutamic acid and lysine entered cumulus-enclosed oocytes cooperatively, while valine, leucine and phenylalanine did not. However, cooperative uptake of leucine and phenylalanine was observed at higher external precursor concentrations. We conclude that in vivo antral mouse oocytes depend on surrounding granulosa cells for amino acid uptake, with the exception of amino acids carried by the leucine exchange transport system, and propose that amino acid transfer between granulosa cells and oocytes is dependent on precursor concentrations in the coupled cells.  相似文献   

16.
Two transport systems for neutral amino acids have been characterised in LLC-PK1 cells. The first, which transport alanine in a sodium-dependent manner, also mediates alanine exchange and is preferentially inhibited by serine, cysteine, and α-amino-n-butyric acid. This system resembles the ASC system in Ehrlich ascites and some other cell types. There is only a small contribution of other systems to alanine uptake. The second, which transports leucine with no requirement for sodium and mediates leucine exchange, is blocked by 2-aminonorbornane-2-carboxylic acid and hydrophobic amino acids. This system is similar to the L system described in other cell types. LLC-PK1 cells retain several other features implying renal proximal tubule origin; our results thus suggest that these transport systems may be involved in the reabsorption of neutral amino acids by the nephron in vivo.  相似文献   

17.
The effect of triiodothyronine (T3′) on the uptake of several amino acids into the amino acid pools and into proteins of Rana catesbeiana tadpole liver and tail muscle and tail fin has been studied. Labeling of the alanine and glycine pool was stimulated in the liver more than the leucine pool. After exposure to T3 for 3 days, uptake of α-aminoisobutyric acid (a transport model substrate) into liver was stimulated about 55%. In tail tissues uptake of leucine was stimulated but uptake of alanine was depressed by T3. Incorporation of leucine and alanine into tissue protein was stimulated in the liver but inhibited in tail tissues after T3 injection.Changes in other macromolecules and ATP and ADP levels in liver and tail muscle were also investigated during induced metamorphosis. In the liver, the total DNA content did not change, but the RNA and protein content per liver increased significantly. The increase in RNA/DNA and protein/DNA ratios, suggested that liver cells underwent hypertrophy during induced metamorphosis. The ATP level showed a transient decrease after 3 days of T3 treatment. In tail muscle, protein and RNA content decreased as the muscle regressed, but the DNA content and ATP level remained unchanged throughout the experimental period.  相似文献   

18.
—The blood-brain barrier transport of amino acids has been measured using the carotid injection technique in the rat. The synthetic amino acids, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and α-(methylamino)isobutyric acid (MeAIB), were model substrates in the Ehrlich cell for the leucine (L) and alanine (A) neutral amino acid transport mechanisms, respectively. The uptake (±)b-[carboxyl-14C]BCH at the same rate for the five brain regions tested suggested a similarity between regions for the L transport mechanism. At injectant concentrations of 0·1 mm (similar to naturally occurring aromatic neutral amino acids), BCH was mainly taken up by a saturable mediated transport mechanism (K1, 0·16 mm and Vmax, 0·03/μmol/g per min). At higher concentrations, uptake by a nonsaturable or diffusional mechanism could be demonstrated. When BCH was added as a second amino acid to l -[3-14C]DOPA, the saturable component of l -DOPA transport was significantly inhibited. MeAIB had no measurable effect on the rate of l -DOPA transport. These results suggested that the mediated transport mechanism for l -DOPA at the cerebral capillaries is similar to the l -neutral amino acid transport system.  相似文献   

19.
Li ZC  Bush DR 《Plant physiology》1991,96(4):1338-1344
Proton-coupled aliphatic, neutral amino acid transport was investigated in plasma membrane vesicles isolated from sugar beet (Beta vulgaris L., cv Great Western) leaves. Two neutral amino acid symport systems were resolved based on inter-amino acid transport competition and on large variations in the specific activity of each porter in different species. Competitive inhibition was observed for transport competition between alanine, methionine, glutamine, and leucine (the alanine group) and between isoleucine, valine, and threonine (the isoleucine group). The apparent Km and Ki values were similar for transport competition among amino acids within the alanine group. In contrast, the kinetics of transport competition between these two groups of amino acids did not fit a simple competitive model. Furthermore, members of the isoleucine group were weak transport antagonists of the alanine group. These results are consistent with two independent neutral amino acid porters. In support of that conclusion, the ratio of the specific activity of alanine transport versus isoleucine transport varied from two- to 13-fold in plasma membrane vesicles isolated from different plant species. This ratio would be expected to remain relatively stable if these amino acids were moving through a single transport system and, indeed, the ratio of alanine to glutamine transport varied less than twofold. Analysis of the predicted structure of the aliphatic, neutral amino acids in solution shows that isoleucine, valine, and threonine contain a branched methyl or hydroxyl group at the β-carbon position that places a dense electron cloud close to the α-amino group. This does not occur for the unbranched amino acids or those that branch further away, e.g. leucine. We hypothesize that this structural feature of isoleucine, valine, and threonine results in unfavorable steric interactions with the alanine transport system that limits their flux through this porter. Hydrophobicity and hydrated volumes did not account for the observed differences in transport specificity.  相似文献   

20.
Although amino acid transport has been extensively studied in bacteria during the past decade, little is known concerning the transport of those amino acids that are biosynthetic intermediates or have multiple fates within the cell. We have studied homoserine and threonine as examples of this phenomenon. Homoserine is transported by a single system which it shares with alanine, cysteine, isoleucine, leucine, phenylalanine, threonine, tyrosine, and valine. The evidence for this being the sole system for homoserine transport is (i) a linear double-reciprocal plot showing a homoserine K(m) of 9.6 x 10(-6) M, (ii) simultaneous reduction by 85% of homoserine and branched-chain amino acid uptake in a mutant selected for its inability to transport homoserine, and (iii) simultaneous reduction by 94% of the uptake of homoserine and the branched-chain amino acids by cells grown in millimolar leucine. Threonine, in addition to sharing the above system with homoserine, is transported by a second system shared with serine. The evidence for this second system consists of (i) incomplete inhibition of threonine uptake by any single amino acid, (ii) only 70% loss of threonine uptake in the mutant unable to transport homoserine, and (iii) only 40% reduction of threonine uptake when cells are grown in millimolar leucine. In this last case, the remaining threonine uptake can only be inhibited by serine and the inhibition is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号