首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong top-down control by consumers has been demonstrated in rocky intertidal communities around the world. In contrast, the role of bottom-up effects (nutrients and productivity), known to have important influences in terrestrial and particularly freshwater ecosystems, is poorly known in marine hard-bottom communities. Recent studies in South Africa, New England, Oregon and New Zealand suggest that bottom-up processes can have important effects on rocky intertidal community structure. A significant aspect of all of these studies was the incorporation of processes varying on larger spatial scales than previously considered (10’s to 1000’s of km). In all four regions, variation in oceanographic factors (currents, upwelling, nutrients, rates of particle flux) was associated with different magnitudes of algal and/or phytoplankton abundance, availability of particulate food, and rates of recruitment. These processes led to differences in prey abundance and growth, secondary production, consumer growth, and consumer impact on prey resources. Oceanographic conditions therefore may vary on scales that generate ecologically significant variability in populations at the bottom of the food chain, and through upward-flowing food chain effects, lead to variation in top-down trophic effects. I conclude that top-down and bottom-up processes can be important joint determinants of community structure in rocky intertidal habitats, and predict that such effects will occur generally wherever oceanographic ‘discontinuities’ lie adjacent to rocky coastlines. I further argue that increased attention by researchers and of funding agencies to such benthic–pelagic coupling would dramatically enhance our understanding of the dynamics of marine ecosystems.  相似文献   

2.
Little is known about the processes regulating species richness in deep‐sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species–energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep‐sea fossil record of benthic foraminifera and statistical meta‐analyses of temperature‐richness and productivity‐richness relationships in 10 deep‐sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature‐richness relationship in the deep‐sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species.  相似文献   

3.
The earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.g., kelp) and animal (e.g., shellfish) species. We quantified changes in the abundance of the blue mussel (Mytilus edulis), a foundation species known to influence diversity and productivity of intertidal habitats, over the past 40 years in the Gulf of Maine, USA, one of the fastest warming regions in the global ocean. Using consistent survey methods, we compared contemporary population sizes to historical data from sites spanning >400 km. The results of these comparisons showed that blue mussels have declined in the Gulf of Maine by >60% (range: 29–100%) at the site level since the earliest benchmarks in the 1970s. At the same time as mussels declined, community composition shifted: at the four sites with historical community data, the sessile community became increasingly algal dominated. Contemporary (2013–2014) surveys across 20 sites showed that sessile species richness was positively correlated to mussel abundance in mid to high intertidal zones. These results suggest that declines in a critical foundation species may have already impacted the intertidal community. To inform future conservation efforts, we provide a database of historical and contemporary baselines of mussel population abundance and dynamics in the Gulf of Maine. Our results underscore the importance of anticipating not only changes in diversity but also changes in the abundance and identity of component species, as strong interactors like foundation species have the potential to drive cascading community shifts.  相似文献   

4.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

5.
Coastal ecosystems are energetically connected through passive transport of nutrients but also by migrations of motile organisms. Mangroves are highly productive tropical ecosystems that replenish offshore populations of many species, but we know little about the degree to which this production is fuelled by prey from mangroves, especially in the cases in which mangroves are only accessible at high tide. Different results have been obtained on the importance of mangroves as feeding habitats, confounded by differences in species composition, seascape configuration, and methodology. In the present study, we took a more holistic approach by exploring reliance by fishes on mangroves as a feeding habitat at multiple ecological levels: from individuals to species to communities in mangrove ecosystems from across the globe, using a stable isotope approach. A two end-member mixing model showed a wide range (12–72%) in degree of reliance on mangrove food sources by fishes from different studies across the globe. However, analyzed at the levels of individual fish and species, reliance was low (for example, <25% for 55% of the species worldwide, or <50% for 85% of species, respectively) even though they were collected from sites that differed in geographical location, tidal regime, seascape structure, and species composition. The high fisheries productivity of mangroves appears to be energetically supported largely by food sources from adjacent habitats. In light of the ongoing rapid demise and fragmentation of mangrove and adjacent ecosystems, loss of ecosystem connectivity is likely to affect the productivity and functioning of tropical coastal ecosystems and the services they provide.  相似文献   

6.
Abstract We report the composition of terrestrial, intertidal and shallow sublittoral faunal communities at sites around Rothera Research Station, Adelaide Island, Antarctic Peninsula. We examined primary hypotheses that the marine environment will have considerably higher species richness, biomass and abundance than the terrestrial, and that both will be greater than that found in the intertidal. We also compared ages and sizes of individuals of selected marine taxa between intertidal and subtidal zones to test the hypothesis that animals in a more stressed environment (intertidal) would be smaller and shorter lived. Species richness of intertidal and subtidal communities was found to be similar, with considerable overlap in composition. However, terrestrial communities showed no overlap with the intertidal, differing from previous reports, particularly from further north on the Antarctic Peninsula and Scotia Arc. Faunal biomass was variable but highest in the sublittoral. While terrestrial communities were depauperate with low biomass they displayed the highest overall abundance, with a mean of over 3 × 105 individuals per square metre. No significant differences in ages of intertidal and subtidal individuals of the same species were found, with bryozoan colonies of up to 4 years of age being present in the intertidal. In contrast with expectation and the limited existing literature we conclude that, while the Antarctic intertidal zone is clearly a suboptimal and highly stressful habitat, its faunal community can be well established and relatively diverse, and is not limited to short‐term opportunists or waifs and strays.  相似文献   

7.
Aim It is often assumed that species reach their highest densities in the centre of their ranges and decline in abundance toward the edges of the range. Implicit in this notion, which we call the abundant centre hypothesis, is the assumption that the edges of the range are more stressful to organisms and are more likely to show responses to climate change. However, an earlier review and empirical study of patterns of abundance across the range of intertidal invertebrates show little support for the abundant centre hypothesis and further demonstrated that few studies have examined patterns in either abundance or stress across species ranges. In part this gap is due to the logistical difficulties of sampling species across large geographical ranges. Here we use intertidal invertebrates, which have relatively simple linear latitudinal ranges, and heat‐shock proteins, which have been shown to be an integrative measure of organismal stress, to test the hypothesis that species are more stressed at the edges of their range. We use complementary data on population density to test the relationship between stress proteins and overall species density across the species’ range. Location Our sampling programme covered the southern half of the large geographical ranges of two intertidal invertebrates on the Pacific Coast of North America. Sites were spread between northern Baja California, Mexico and Vancouver Island, Canada, a range of c. 22 degrees of latitude. Method We sampled levels of heat‐shock protein 70 (Hsp70) in eight to 12 individuals from each of 20 sites for the intertidal mussel Mytilus californianus and 11 sites for the intertidal snail Nucella ostrina, spread throughout the southern half of their geographical ranges. The relationships between levels of Hsp70 in individuals from a site and (1) latitude of the site, (2) the site's position in the species’ range and (3) average population density were determined. Results No significant relationship was found in either species between levels of Hsp70 and latitude, position in the range or population density. Complex patterns that did emerge may be explained by nonlinear gradients in environmental conditions along the Pacific coast. Specifically, we observed peak values of Hsp70 for both species in northern Oregon, where intertidal zones are disproportionately exposed to daytime emersion (exposure to air) in the summer months of collections. A second peak for M. californianus was found south of Point Conception, California, which is marked by dramatic shifts toward warmer sea temperatures and decreased wave exposure. Main conclusions Patterns that emerged were not predicted by simple models based on the abundant centre hypothesis. However, they are consistent with more complex pictures of heat stress, organismal condition and abundance along a latitudinal gradient that have been demonstrated in recent studies. We suggest that latitudinal complexity, species‐specific differences and local effects must be considered before generalizing the relationship between environmental stress, abundance, range limits and responses of ranges to climate change.  相似文献   

8.
Thiel  Martin  Kruse  Inken 《Hydrobiologia》2001,456(1-3):21-32
The ecology of nemertean predators in marine ecosystems is reviewed. Nemerteans occur in most marine environments although usually in low abundances. Some species, particularly in intertidal habitats, may reach locally high densities. During specific time periods appropriate for hunting, nemerteans roam about in search of prey. Upon receiving a stimulus (usually chemical cues), many nemertean species actively pursue their prey and follow them into their dwellings or in their tracks. Other species (many hoplonemerteans) adopt a sit-and-wait strategy, awaiting prey items in strategic locations. Nemerteans possess potent neurotoxins, killing even highly mobile prey species within a few seconds and within the activity range of its attacker. Most nemertean species prey on live marine invertebrates, but some also gather on recently dead organisms to feed on them. Heteronemerteans preferentially feed on polychaetes, while most hoplonemerteans prey on small crustaceans. The species examined to date show strong preferences for selected prey species, but will attack a variety of alternative prey organisms when deprived of their favourite species. Ontogenetic changes in prey selection appear to occur, but no further information about, e.g. size selection, is available. Feeding rates as revealed from short-term laboratory experiments range on the order of 1–5 prey items d–1. These values apparently are overestimates, since long-term experiments report substantially lower values (0.05–0.3 prey items d–1). Nemerteans have been reported to exert a strong impact on the population size of their prey organisms through their predation activity. Considering low predation rates, these effects may primarily be a result of indirect and additive interactions. We propose future investigations on these interactive effects in combination with other predators. Another main avenue of nemertean ecological research appears to be the examination of their role in highly structured habitats such as intertidal rocky shore and coral reef environments.  相似文献   

9.
Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects'') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.  相似文献   

10.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

11.
Global energy use and food production have increased nitrogen inputs to ecosystems worldwide, impacting plant community diversity, composition, and function. Previous studies show considerable variation across terrestrial herbaceous ecosystems in the magnitude of species loss following nitrogen (N) enrichment. What controls this variation remains unknown. We present results from 23 N-addition experiments across North America, representing a range of climatic, soil and plant community properties, to determine conditions that lead to greater diversity decline. Species loss in these communities ranged from 0 to 65% of control richness. Using hierarchical structural equation modelling, we found greater species loss in communities with a lower soil cation exchange capacity, colder regional temperature, and larger production increase following N addition, independent of initial species richness, plant productivity, and the relative abundance of most plant functional groups. Our results indicate sensitivity to N addition is co-determined by environmental conditions and production responsiveness, which overwhelm the effects of initial community structure and composition.  相似文献   

12.
Spartina anglica is an exotic perennial grass that can rapidly colonise the intertidal zone of temperate estuaries and lagoons. Consequently, there is considerable concern about its impact on estuarine flora and fauna. This study provides the first investigation of ecological impacts by S. anglica in Australia. The objective was to investigate the impacts of S. anglica on benthic macroinvertebrate communities inhabiting mudflat and native saltmarsh habitats at Little Swanport estuary, Tasmania. The null hypothesis that species richness and species abundance of benthic macroinvertebrates in exotic S. anglica marsh does not differ from adjacent native saltmarsh and mudflat habitats was tested. Eighteen species and 3716 macroinvertebrates were collected from 60 intertidal core samples in three habitats. Species richness, total abundance of invertebrates, crustacean abundance and mollusc abundance of mudflat communities were significantly (P < 0.05) lower when compared to those inhabiting adjacent S. anglica marsh and native saltmarsh. However, species richness and total abundance of invertebrates of native saltmarsh and S. anglica marsh did not differ significantly. Ordination of macroinvertebrate data clearly separated mudflat sites from vegetated sites but showed remarkable similarity between exotic and native vegetated sites.  相似文献   

13.
Diversity and similarity of butterfly communities were assessed in five different habitat types (from natural closed forest to agricultural lands) in the mountains of Tam Dao National Park, Vietnam for 3 years from 2002 to 2004. The line transect count was used to record species richness and abundance of butterfly communities in the different habitat types. For each habitat, the number of species and individuals, and indices of species richness, evenness and diversity of butterfly communities were calculated. The results indicated that species richness and abundance of butterfly communities were low in the natural closed forest, higher in the disturbed forest, highest in the forest edge, lower in the shrub habitat and lowest in the agricultural lands. The indices of species richness, evenness and diversity of butterfly communities were low in agricultural lands and natural closed forest but highest in the forest edge and shrub habitats. The families Satyridae and Amathusiidae have the greatest species richness and abundance in the natural closed forest, with a reduction in their species richness and abundance from the natural closed forest to the agricultural lands. Species composition of butterfly communities was different among five different habitat types (40%), was similar in habitats outside the forest (68%) and was similar in habitats inside the forest (63%). Diversity and abundance of butterfly communities are not different between the natural closed forest and the agriculture lands, but species composition changed greatly between these habitat types. A positive correlation between the size of species geographical distribution range and increasing habitat disturbance was found. The most characteristic natural closed forest species have the smallest geographical distribution range.  相似文献   

14.
Medium-sized mammalian predators (i.e. mesopredators) on islands are known to have devastating effects on the abundance and diversity of terrestrial vertebrates. Mesopredators are often highly omnivorous, and on islands, may have access not only to terrestrial prey, but to marine prey as well, though impacts of mammalian mesopredators on marine communities have rarely been considered. Large apex predators are likely to be extirpated or absent on islands, implying a lack of top-down control of mesopredators that, in combination with high food availability from terrestrial and marine sources, likely exacerbates their impacts on island prey. We exploited a natural experiment—the presence or absence of raccoons (Procyon lotor) on islands in the Gulf Islands, British Columbia, Canada—to investigate the impacts that this key mesopredator has on both terrestrial and marine prey in an island system from which all native apex predators have been extirpated. Long-term monitoring of song sparrow (Melospiza melodia) nests showed raccoons to be the predominant nest predator in the Gulf Islands. To identify their community-level impacts, we surveyed the distribution of raccoons across 44 Gulf Islands, and then compared terrestrial and marine prey abundances on six raccoon-present and six raccoon-absent islands. Our results demonstrate significant negative effects of raccoons on terrestrial, intertidal, and shallow subtidal prey abundance, and point to additional community-level effects through indirect interactions. Our findings show that mammalian mesopredators not only affect terrestrial prey, but that, on islands, their direct impacts extend to the surrounding marine community.  相似文献   

15.
Our ability to accurately forecast species' geographical responses to climate change requires knowledge of the proximate and ultimate drivers of their distribution. Here, we consider the ecophysiological and demographic determinants of the distribution of a partial migrant, the North American field sparrow, Spizella pusilla. From 1940 to 1963, the field sparrow extended its winter northern range margin 222km polewards. Such expansion was coincident with not only a geographical expansion into suitable breeding habitats, but also a decrease in mean abundance across sites occupied during the winter surveys. Combined, these trends suggest that declining populations along the expansion front either stopped migrating or altered their autumn migration. The poleward expansion was not coincident with climatically induced decreases in peak metabolic energy demand, but it did track increases in ecosystem net primary productivity. After 1963, the species' lower lethal temperature prevented further poleward movement. These findings show how different ecophysiological constraints can interact to change migration and distribution in a demographically declining species.  相似文献   

16.
Trematode communities in populations of estuarine snails can reflect surrounding animal diversity, abundance, and trophic interactions. We know less about the potential for trematodes to serve as bioindicators in other habitats. Here, we reanalyze data from 2 published studies concerning trematodes, 1 in the Chilean rocky intertidal zone and the other from the East African rift lake, Lake Tanganyika. Our analyses indicate that trematodes are more common in protected areas and that in both habitats they are directly and positively related to surrounding host abundance. This further supports the notion that trematodes in first intermediate hosts can serve as bioindicators of the condition of free-living animal communities in diverse ecosystems.  相似文献   

17.
The exploitation ecosystems hypothesis (EEH) makes predictions about trophic interactions along gradients of primary productivity. The EEH has been shown to apply to a wide range of terrestrial environments but its applicability to arid environments has received little attention. One reason for this is that arid environments may not satisfy the assumptions of the EEH because dearth of water may limit biological activity in both temporal and spatial contexts. The EEH predicts that herbivore biomass should increase linearly with primary productivity in the absence of predators; but when predators are present herbivore biomass will remain relatively constant due to top down regulation. We tested this prediction in an arid environment using rainfall as a proxy of primary productivity and an index of the abundance of the dominant herbivores (kangaroos Macropus spp.). We compared an index of kangaroo abundance at 18 areas situated along a gradient of mean annual rainfall in areas where a top predator (the dingo Canis lupus dingo) was rare and common. We also explored the relationship between the density of artificial water points (AWPs) and kangaroo abundance to investigate if the resource subsidy provided by AWPs allows kangaroos to persist in high numbers. Consistent with the EEH, kangaroo abundance showed a weak relationship with mean annual rainfall in the presence of dingoes but increased with increasing annual rainfall in the absence of dingoes. The density of AWPs was a poor predictor of kangaroo abundance. Our analysis of macro‐ecological patterns suggests that kangaroo populations are primarily top down regulated in the presence of dingoes, but are bottom up regulated in the absence of dingoes. Our findings provide evidence that top down regulation can prevail over bottom up regulation of herbivore populations in arid ecosystems and highlights the usefulness of the EEH as a predictor of macro‐ecological patterns of species abundance.  相似文献   

18.
In the study of food webs, the existence and explanation of recurring patterns, such as the scale invariance of linkage density, predator–prey ratios and mean chain length, constitute long-standing issues. Our study focused on litter-associated food webs and explored the influence of detritivore and predator niche width (as δ13C range) on web topological structure. To compare patterns within and between aquatic and terrestrial ecosystems and take account of intra-habitat variability, we constructed 42 macroinvertebrate patch-scale webs in four different habitats (lake, lagoon, beech forest and cornfield), using an experimental approach with litterbags. The results suggest that although web differences exist between ecosystems, patterns are more similar within than between aquatic and terrestrial web types. In accordance with optimal foraging theory, we found that the niche width of predators and prey increased with the number of predators and prey taxa as a proportion of total taxa in the community. The tendency was more marked in terrestrial ecosystems and can be explained by a lower per capita food level than in aquatic ecosystems, particularly evident for predators. In accordance with these results, the number of links increased with the number of species but with a significantly sharper regression slope for terrestrial ecosystems. As a consequence, linkage density, which was found to be directly correlated to niche width, increased with the total number of species in terrestrial webs, whereas it did not change significantly in aquatic ones, where connectance scaled negatively with the total number of species. In both types of ecosystem, web robustness to rare species removal increased with connectance and the niche width of predators. In conclusion, although limited to litter-associated macroinvertebrate assemblages, this study highlights structural differences and similarities between aquatic and terrestrial detrital webs, providing field evidence of the central role of niche width in determining the structure of detritus-based food webs and posing foraging optimisation constraints as a general mechanistic explanation of food web complexity differences within and between ecosystem types.  相似文献   

19.
With current losses of saltmarsh running at > 100 ha per year in the UK, creation of new intertidal habitats through managed realignment is likely to be increasingly used. Potentially, this has biodiversity as well as engineering benefits. However, assessing the conservation value of many of the current UK schemes is difficult as the biological monitoring has been generally poor, with a few notable exceptions. At the Tollesbury and Orplands realignment sites, Essex, bird communities were dominated by terrestrial species during the first year of inundation and waterbird communities rapidly developed during the second and third years. Five years after the initial breach in the sea wall, communities were similar to surrounding mudflats but with some notable exceptions. Dunlin Calidris alpina and Common Redshank Tringa totanus that prey on the early colonizing Nereis and Hydrobia used the sites in the first 2 years. Eurasian Oystercatcher Haematopus ostralegus did not occur on the realignment site as there were no large bivalves, whereas Red Knot Calidris canutus used the site after 4–5 years coincidentally with the appearance of Macoma balthica . The differences in the bird communities occurred because UK sites are often small, enclosed and poorly drained. If at a suitable height in the tidal frame, UK managed realignment sites are successful in that they have developed saltmarsh and biologically active mudflats but they may lack the full range of biodiversity found in surrounding natural intertidal habitats, even decades after inundation.  相似文献   

20.
The lesser kestrel Falco naumanni experienced a marked decline during the second half of the 20th century due to changes in land use that influenced breeding success by reducing the abundance and quality of prey. However, the factors governing spatial and temporal variation of prey abundance around lesser kestrel colonies has not yet been investigated. We sampled Orthoptera abundance in the main crop types and edge habitats surrounding six lesser kestrel colonies in southern Spain. Samplings focused on Orthoptera because they constitute the main prey during the nestling period. Only those Orthoptera species that are known to be preyed by lesser kestrels were considered in this study. We found differences in prey density among localities, and crop types. Semi-natural habitats such as grasslands, fallow land, and field margins held the highest densities. However, prey abundance showed a complex pattern that was not possible to explain solely on the basis of crop composition around colonies. Factors determining productivity in individual fields like soil type and productivity or biocide input, and mean size of agricultural fields contributed to explain this complex pattern of prey abundance. Our results highlight the key role of semi-natural and edge habitats in farmed landscapes as prey reservoirs and corridors. Higher conservation priorities for these habitats are suggested to benefit foraging lesser kestrels, but many other farmland species that also experienced steep population declines due to decreasing food supply resulting from modern agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号