首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the importance of substrate methylation by S-adenosylmethionine-dependent methyltransferases for neuronal differentiation of P19 embryonal carcinoma cells. We show that treatment of cells with methyltransferase inhibitor adenosine dialdehyde (AdOx) interferes with neuronal differentiation. Retinoic acid (RA) and AdOx co-treated cells had a decreased number of neurites and a flattened morphology compared with cells differentiated by RA. Also, the amount of neuronal class III tubulin (Tuj1) decreased from 76% to 9.6% with AdOx-treatment. Gene expression levels of wnt-1, brn-2, neuroD, and mash-1 were also down-regulated by AdOx-treatment. But AdOx-treatment did not up-regulate BMP-4 and GFAP genes. Treatment of RA decreased E-cadherin expression during neuronal differentiation. However, in AdOx/RA co-treated cells, E-cadherin expression was restored to the control level. Also, mRNA expression of N-cadherin decreased with AdOx-treatment. Taken together, these data show that methylation reactions might influence the cell-fate decision and neuronal differentiation of P19 cells.  相似文献   

2.
3.
4.
We have found that the gene expression of the ninth member of the fibroblast growth factor (FGF) family, FGF9 was induced during retinoic acid(RA)-induced neuronal differentiation of murine embryonal carcinoma P19 cells. We have reported here the nucleotide sequence of the mouse FGF9 cDNA. The murine cDNA showed 92.4% nucleotide sequence homology to the human FGF9 cDNA and 98.2% homology to that of rats. This mouse FGF9 cDNA encoded a polypeptide consisting of 208 amino acids with amino acid sequence identical to that of rats. Only one amino acid was replaced compared to the human homolog. The highly conserved sequence homology of FGF9 suggests its functional importance. FGF9 was originally isolated from a culture medium of a human glioma cell line as a growth-promoting factor for glial cells [5]. Upon induction of neuronal differentiation by forming cell aggregates with 10−6 M RA, the gene expression of FGF9 was increased biphasically during the first 96 hours when cells were aggregating and from 168 hours to 192 hours followed by plating onto a tissue culture dish as glia-like cells proliferated. Neither undifferentiated P19 cells nor the cells aggregated without RA remaining undifferentiated expressed FGF9. This indicates that RA regulates the gene expression of FGF9 that may play an important role in neuronal differentiation in both early and late developmental process.  相似文献   

5.
In mouse embryos, the int-1 proto-oncogene is transiently expressed in areas of the developing neural system. Retinoic acid-treated P19 embryonal carcinoma cells have often been used as an in vitro model for the molecular basis of neural development. We shown here that int-1 is transiently expressed in differentiated P19 cells. The time course and retinoic acid dose dependence of int-1 expression suggest that the gene is specifically expressed during early neural differentiation. P19 cells may be a useful model to assist in the study, at the cellular level, of the role of int-1 in neural development.  相似文献   

6.
7.
8.
P19 embryonal carcinoma (EC) cells undergo apoptosis during neuronal differentiation induced by all-trans retinoic acid (RA). Caspase-3-like proteases are activated and involved in the apoptosis of P19 EC cells during neuronal differentiation.1 Recently it has been shown that growth factor signals protect against apoptosis by phosphorylation of Bad. Phosphorylated Bad, an apoptotic member of the Bcl-2 family, cannot bind to Bcl-xL and results in Bcl-xL homodimer formation and subsequent antiapoptotic activity. In the present study, we demonstrate that this system is used generally to protect against apoptosis during neuronal differentiation. Bcl-xL inhibited the activation of caspase-3-like proteases. Basic fibroblast growth factor (bFGF) inhibited more than 90% of the caspase-3-like activity, inhibited processing of caspase-3 into its active form, and inhibited DNA fragmentation. bFGF activated phosphatidyl-inositol-3-kinase (PI3K) and stimulated the phosphorylation of Bad. Phosphorylation was inhibited by wortmannin, an inhibitor of PI3K and its downstream target Akt. Thus, Bad is a target of the FGF receptor-mediated signals involved in the protection against activation of caspase-3.  相似文献   

9.
10.
11.
12.
13.
Kinins are vasoactive oligopeptides generated upon proteolytic cleavage of low and high molecular weight kininogens by kallikreins. These peptides have a well established signaling role in inflammation and homeostasis. Nevertheless, emerging evidence suggests that bradykinin and other kinins are stored in the central nervous system and may act as neuromediators in the control of nociceptive response. Here we show that the kinin-B2 receptor (B2BKR) is differentially expressed during in vitro neuronal differentiation of P19 cells. Following induction by retinoic acid, cells form embryonic bodies and then undergo neuronal differentiation, which is complete after 8 and 9 days. Immunochemical staining revealed that B2BKR protein expression was below detection limits in nondifferentiated P19 cells but increased during the course of neuronal differentiation and peaked on days 8 and 9. Measurement of [Ca(2+)](i) in the absence and presence of bradykinin showed that most undifferentiated cells are unresponsive to bradykinin application, but following differentiation, P19 cells express high molecular weight neurofilaments, secrete bradykinin into the culture medium, and respond to bradykinin application with a transient increase in [Ca(2+)](i). However, inhibition of B2BKR activity with HOE-140 during early differentiation led to a decrease in the size of embryonic bodies formed. Pretreatment of differentiating P19 cells with HOE-140 on day 5 resulted in a reduction of the calcium response induced by the cholinergic agonist carbamoylcholine and decreased expression levels of M1-M3 muscarinic acetylcholine receptors, indicating crucial functions of the B2BKR during neuronal differentiation.  相似文献   

14.
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.  相似文献   

15.
16.
P19 embryonal carcinoma (EC) cells can be induced in vitro to differentiate into cells resembling those normally formed in the embryo. Among these cell types is one whose morphology is fibroblast-like. Using indirect immunofluorescence and Western blot analysis with antibodies directed against various isoforms of actin, many of these fibroblast-like cells were found to express smooth muscle actin isoforms. Northern blot analysis of RNA indicated the presence of a smooth muscle-specific isoform of myosin heavy-chain mRNA in immortal lines of these fibroblast-like cells. These results suggest that these fibroblast-like cells resemble fetal myofibroblastic or myoepithelial cells, which have a wide distribution during embryonic development.  相似文献   

17.
18.
During embryonic development, cells not only increase in number, they also undergo specialization and differentiate into diverse cell types that are organized into different tissues and organs. Nervous system development, for example, involves a complex series of events such as neuronal and astroglial differentiation that are coordinated among adjacent cells. The organization of growth and differentiation may be mediated, at least partly, by exchange of small ions and molecules via intercellular gap junction channels. These structures are mode of connexons (hemichannels), which are hexameric assemblies of the gap junction proteins, connexins. We investigated the role of intercellular communication in neuronal and astroglial differentiation by using a gap junction blocking agent, carbenoxolone (CBX), in comparison to its inactive (control) analog, glycyrrhizic acid (GZA). We used the mouse P19 embryonal carcinoma cell line, which differentiates into neurons and astrocytes upon retinoic acid (RA) induction. Our results show that both GZA- and CBX-treated cells express alpha 1 connexin (connexin43). The level of alpha 1 connexin decreases upon RA induction. CBX treated cells show significant reduction in both neuronal (5-fold) and astrocytic (13-fold) differentiation compared with those of control. These results clearly indicate that the blockage of gap junction-mediated intercellular communication interferes with differentiation of P19 cells into neurons and astrocytes.  相似文献   

19.
20.
Protein phosphorylation on tyrosine residues is one of the major mechanisms of cell signal transduction and is regulated by protein tyrosine kinases and protein tyrosine phosphatases. Here we report the molecular cloning of an additional member of the protein tyrosine phosphatase-family from differentiated murine P19 embryonal carcinoma cells. This non-receptor protein tyrosine phosphatase, P19-PTP, does not contain regulatory sequences, homologous to the ones found in other non-receptor PTPases. P19-PTP is differentially expressed during in vitro differentiation of P19 EC cells, in that P19-PTP mRNA could only be detected in embryoid bodies, derived from P19 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号