首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposons are mobile genetic elements that are part of the genomic DNA of numerous organisms and belong to two classes. Unlike class I transposons, class II DNA transposons do not use the stage of RNA synthesis in their transition; they perform it by the cut-and-paste mechanism or with a replicative transposition. The integration of a DNA transposon in a new site results in the duplication of a target sequence on either side of a transposon, and its excision is, as a rule, associated with insertions and deletions. The piggyBac transposon isolated from the Trichoplusia ni moth differs from other mobile elements of its class. Due to its unique ability to leave no traces after excision from an insertion site and to perform successful transposition and transference of large DNA fragments, piggyBac is a convenient tool for the development of gene engineering approaches. The TTAA sequence serves as a target site for transposon integration: insertion in the AT-rich DNA regions is more frequent. The ability of piggyBac to be transferred to a new area independently of the cell apparatus and to restore a DNA site without error after excision lies in the mechanism of its transposition, which is discussed in detail in the present review. Along with other transposons and viruses, the piggyBac transposon is widely used in the transgenesis of various organisms; it also finds application in insertion mutagenesis and gene therapy.  相似文献   

2.
转座子Sleeping Beauty和PiggyBac   总被引:2,自引:0,他引:2  
近10年来,得益于转座子Sleeping Beauty(SB)和PiggyBac(PB)的发现和完善,转座子作为一种遗传工程工具在脊椎动物的基因遗传研究中得到广泛应用.SB和PB宿主范围极其广泛,从单细胞生物到哺乳动物都能够发挥作用.转座过程需要转座序列和转座酶的存在,类似于"剪切"、"粘贴"的方式.转座子载体系统转座时可携带一段外源DNA序列,利用这一特性可以用于实现目的基因的转移,现已广泛用于转基因动物、基因功能研究、基因治疗等领域.当转座系统与基因捕获技术相结合,不仅可研究插入突变基因的功能,还能通过所携带的报告基因获得捕获基因的表达图谱.作为非病毒载体的SB和PB转座系统,由于具有高容量、高效率和高安全性等优势,并且PB在转座后不留任何足迹,不会造成遗传物质的不可预测改变,在动物基因工程以及基因治疗方面具有诱人的前景.  相似文献   

3.
Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.  相似文献   

4.
5.
Transposons are well-known architects of genetic change but their role in insecticide resistance has, until recently, only been speculated upon. Transposon insertion, or transposon-mediated transposition, could alter either metabolic enzymes capable of degrading pesticides or could change the functionality of insecticide targets. The recent work of Aminetzach and coworkers suggests an exciting alternative, that transposon insertion can cause resistance by altering gene product function. This hypothesis is discussed in the light of other examples in which transposons have been implicated in insecticide resistance.  相似文献   

6.
转座子(transposable elements,TEs)是指在基因组上能从同一条染色体的一个位置转移到另一个位置或者从一条染色体转移到另一条染色体上的一段DNA序列。广泛存在于基因组中的转座子通过复制、动员、重组基因片段以及修改原基因结构形成的新基因,被称为转座子衍生基因。该文综述了转座子衍生基因与转座子和常规基因的异同以及转座子衍生基因的演变途径,归纳了转座子衍生基因对宿主基因进化,以及对生物生长发育的影响。  相似文献   

7.
DNA transposition is an important biological phenomenon that mediates genome rearrangements, inheritance of antibiotic resistance determinants, and integration of retroviral DNA. Transposition has also become a powerful tool in genetic analysis, with applications in creating insertional knockout mutations, generating gene-operon fusions to reporter functions, providing physical or genetic landmarks for the cloning of adjacent DNAs, and locating primer binding sites for DNA sequence analysis. DNA transposition studies to date usually have involved strictly in vivo approaches, in which the transposon of choice and the gene encoding the transposase responsible for catalyzing the transposition have to be introduced into the cell to be studied (microbial systems and applications are reviewed in ref. 1). However, all in vivo systems have a number of technical limitations. For instance, the transposase must be expressed in the target host, the transposon must be introduced into the host on a suicide vector, and the transposase usually is expressed in subsequent generations, resulting in potential genetic instability. A number of in vitro transposition systems (for Tn5, Tn7, Mu, Himar1, and Ty1) have been described, which bypass many limitations of in vivo systems. For this purpose, we have developed a technique for transposition that involves the formation in vitro of released Tn5 transposition complexes (TransposomesTM) followed by introduction of the complexes into the target cell of choice by electroporation. In this report, we show that this simple, robust technology can generate high-efficiency transposition in all tested bacterial species (Escherichia coli, Salmonella typhimurium, and Proteus vulgaris) We also isolated transposition events in the yeast Saccharomyces cerevisiae.  相似文献   

8.
Sleeping Beauty (SB) is a gene-insertion system reconstructed from transposon sequences found in teleost fish and is capable of mediating the transposition of DNA sequences from transfected plasmids into the chromosomes of vertebrate cell populations. The SB system consists of a transposon, made up of a gene of interest flanked by transposon inverted repeats, and a source of transposase. Here we carried out a series of studies to further characterize SB-mediated transposition as a tool for gene transfer to chromosomes and ultimately for human gene therapy. Transfection of mouse 3T3 cells, HeLa cells, and human A549 lung carcinoma cells with a transposon containing the neomycin phosphotransferase (NEO) gene resulted in a several-fold increase in drug-resistant colony formation when co-transfected with a plasmid expressing the SB transposase. A transposon containing a methotrexate-resistant dihydrofolate reductase gene was also found to confer an increased frequency of methotrexate-resistant colony formation when co-transfected with SB transposase-encoding plasmid. A plasmid containing a herpes simplex virus thymidine kinase gene as well as a transposon containing a NEO gene was used for counterselection against random recombinants (NEO+TK+) in medium containing G418 plus ganciclovir. Effective counterselection required a recovery period of 5 days after transfection before shifting into medium containing ganciclovir to allow time for transiently expressed thymidine kinase activity to subside in cells not stably transfected. Southern analysis of clonal isolates indicated a shift from random recombination events toward transposition events when clones were isolated in medium containing ganciclovir as well as G418. We found that including both transposon and transposase functions on the same plasmid substantially increased the stable gene transfer frequency in Huh7 human hepatoma cells. The results from these experiments contribute technical and conceptual insight into the process of transposition in mammalian cells, and into the optimal provision of transposon and transposase functions that may be applicable to gene therapy studies.  相似文献   

9.
Dias MV  Basso LR  Coelho PS 《Gene》2008,417(1-2):13-18
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3::FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Tn5-CaGFP-URA3::FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans.  相似文献   

10.
Transposons have contributed protein coding sequences to a unexpectedly large number of human genes. Except for the V(D)J recombinase and telomerase, all remain of unknown function. Here we investigate the activity of the human SETMAR protein, a highly expressed fusion between a histone H3 methylase and a mariner family transposase. Although SETMAR has demonstrated methylase activity and a DNA repair phenotype, its mode of action and the role of the transposase domain remain obscure. As a starting point to address this problem, we have dissected the activity of the transposase domain in the context of the full-length protein and the isolated transposase domain. Complete transposition of an engineered Hsmar1 transposon by the transposase domain was detected, although the extent of the reaction was limited by a severe defect for cleavage at the 3' ends of the element. Despite this problem, SETMAR retains robust activity for the other stages of the Hsmar1 transposition reaction, namely, site-specific DNA binding to the transposon ends, assembly of a paired-ends complex, cleavage of the 5' end of the element in Mn(2+), and integration at a TA dinucleotide target site. SETMAR is unlikely to catalyze transposition in the human genome, although the nicking activity may have a role in the DNA repair phenotype. The key activity for the mariner domain is therefore the robust DNA-binding and looping activity which has a high potential for targeting the histone methylase domain to the many thousands of specific binding sites in the human genome provided by copies of the Hsmar1 transposon.  相似文献   

11.
Transposons are widely used for genetic engineering in various model organisms. Recently, piggyBac (PB) has been developed as a transposable and efficient gene transfer tool in mammalian cells. In the present study, we developed three types of PB transposon systems containing a dual plasmid system (DPS), a single plasmid system (SPS), and a DNA-mRNA combined system (DRPS) and characterized their basic properties in HEK293 cells. The basic elements of the donor plasmid included a selectable-reporter gene expression cassette, two loxP sites in the same orientation, a multiple cloning site, and two chicken β-globin insulator core elements. We further identified the function of the selectable-reporter and examined PB integration sites in the human genome. Moreover, we compared the transposition efficacy and found that SPS transposed more efficiently, as compared to DPS; integration into the host genome was determined by measuring PBase activity. Results discovered the loss of PBase activity in the DRPS, indicating that this system is much more biologically safe, as compared to DPS and SPS. Finally, we employed the DRPS to successfully perform a gene delivery into bovine mammary epithelial cells (BMECs). Taken together, the information from this study will improve the flexibility of PB transposon systems and reduce the genotoxicity of PBase in genetic engineering.  相似文献   

12.
Transposons are mobile genetic elements and have been utilized as essential tools in genetics over the years. Though highly useful, many of the current transposon-based applications suffer from various limitations, the most notable of which are: (i) transposition is performed in vivo, typically species specifically, and as a multistep process; (ii) accuracy and/or efficiency of the in vivo or in vitro transposition reaction is not optimal; (iii) a limited set of target sites is used. We describe here a genetic analysis methodology that is based on bacteriophage Mu DNA transposition and circumvents such limitations. The Mu transposon tool is composed of only a few components and utilizes a highly efficient and accurate in vitro DNA transposition reaction with a low stringency of target preference. The utility of the Mu system in functional genetic analysis is demonstrated using restriction analysis and genetic footprinting strategies. The Mu methodology is readily applicable in a variety of current and emerging transposon-based techniques and is expected to generate novel approaches to functional analysis of genes, genomes and proteins.  相似文献   

13.
The maize, cut-and-paste transposon Ac/Ds is mobile in Saccharomyces cerevisiae, and DNA sequences of repair products provide strong genetic evidence that hairpin intermediates form in host DNA during this transposition, similar to those formed for V(D)J coding joints in vertebrates. Both DNA strands must be broken for Ac/Ds to excise, suggesting that double-strand break (DSB) repair pathways should be involved in repair of excision sites. In the absence of homologous template, as expected, Ac excisions are repaired by nonhomologous end joining (NHEJ) that can involve microhomologies close to the broken ends. However, unlike repair of endonuclease-induced DSBs, repair of Ac excisions in the presence of homologous template occurs by gene conversion only about half the time, the remainder being NHEJ events. Analysis of transposition in mutant yeast suggests roles for the Mre11/Rad50 complex, SAE2, NEJ1, and the Ku complex in repair of excision sites. Separation-of-function alleles of MRE11 suggest that its endonuclease function is more important in this repair than either its exonuclease or Rad50-binding properties. In addition, the interstrand cross-link repair gene PSO2 plays a role in end joining hairpin ends that is not seen in repair of linearized plasmids and may be involved in positioning transposase cleavage at the transposon ends.  相似文献   

14.
Tn5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have provided us with unprecedented insights into this transposition system. Transposase initiates transposition by forming a dimeric transposase, transposon DNA complex. In the context of this complex, the transposase then catalyses four phosphoryl transfer reactions (DNA nicking, DNA hairpin formation, hairpin resolution and strand transfer into target DNA) resulting in the integration of the transposon into its new DNA site. The studies that elucidated these steps also provided important insights into the integration of retroviral genomes into host DNA and the immune system V(D)J joining process. This review will describe the structures and steps involved in Tn5 transposition and point out a biologically important although surprising characteristic of the wild-type Tn5 transposase. Transposase is a very inactive protein. An inactive transposase protein ensures the survival of the host and thus the survival of Tn5.  相似文献   

15.
We have found a new transposon, Tn2610, on pCS200 in clinical isolates of Escherichia coli, which encodes the carbenicillin-hydrolyzing beta-lactamase gene in combination with the resistance determinants to streptomycin and sulfonamide. Tn2610 has a molecular size of 24 kilobase pairs and is flanked by long inverted repeat sequences of 3 kilobase pairs in length. Genetical and physical analyses indicate that Tn2610 is a single transposable unit encoding the multiple resistance determinants and that is different from any previously described transposon. The characteristic DNA structure observed in various complex resistance transposons involved in the transposition of the carbenicillin-hydrolyzing beta-lactamase gene is discussed.  相似文献   

16.
Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when introduced into new host organisms. We have identified two new active hAT transposons, AeBuster1, from the mosquito Aedes aegypti and TcBuster from the red flour beetle Tribolium castaneum. Activity of both transposons is illustrated by excision and transposition assays performed in Drosophila melanogaster and Ae. aegypti and by in vitro strand transfer assays. These two active insect transposons are more closely related to the Buster sequences identified in humans than they are to the previously identified active hAT transposons, Ac, Tam3, Tol2, hobo, and Hermes. We therefore reexamined the structural and functional relationships of hAT and hAT-like transposase sequences extracted from genome databases and found that the hAT superfamily is divided into at least two families. This division is supported by a difference in target-site selections generated by active transposons of each family. We name these families the Ac and Buster families after the first identified transposon or transposon-like sequence in each. We find that the recently discovered SPIN transposons of mammals are located within the family of Buster elements.  相似文献   

17.
Chimeric piggyBac transposases for genomic targeting in human cells   总被引:2,自引:0,他引:2  
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.  相似文献   

18.
Alternative conformations of a nucleic acid four-way junction   总被引:12,自引:0,他引:12  
Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.  相似文献   

19.
Site-specific Tn7 transposition into the human genome   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterial transposon, Tn7, inserts into a single site in the Escherichia coli chromosome termed attTn7 via the sequence-specific DNA binding of the target selector protein, TnsD. The target DNA sequence required for Tn7 transposition is located within the C-terminus of the glucosamine synthetase (glmS) gene, which is an essential, highly conserved gene found ubiquitously from bacteria to humans. Here, we show that Tn7 can transpose in vitro adjacent to two potential targets in the human genome: the gfpt-1 and gfpt-2 sequences, the human analogs of glmS. The frequency of transposition adjacent to the human gfpt-1 target is comparable with the E.coli glmS target; the human gfpt-2 target shows reduced transposition. The binding of TnsD to these sequences mirrors the transposition activity. In contrast to the human gfpt sequences, Tn7 does not transpose adjacent to the gfa-1 sequence, the glmS analog in Saccharomyces cerevisiae. We also report that a nucleosome core particle assembled on the human gfpt-1 sequence reduces Tn7 transposition by likely impairing the accessibility of target DNA to the Tns proteins. We discuss the implications of these findings for the potential use of Tn7 as a site-specific DNA delivery agent for gene therapy.  相似文献   

20.
Activation of Silent Genes by Transposons Tn5 and Tn10   总被引:8,自引:1,他引:7       下载免费PDF全文
A. Wang  J. R. Roth 《Genetics》1988,120(4):875-885
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号