首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的对比分析人高致病H5N1禽流感病毒、H7N9禽流感病毒及H1N1流感病毒分别感染BALB/c小鼠后的机体反应特征。方法分别以H7N9病毒、H5N1病毒和H1N1病毒滴鼻感染BALB/c小鼠,观察小鼠存活率、体征变化及感染后肺组织病理损伤差异,检测小鼠感染流感病毒后肺组织增殖细胞核抗原(PCNA)表达并观察小鼠感染后修复状况。结果 H7N9病毒、H5N1病毒和H1N1病毒均感染BALB/c小鼠,小鼠存活率依次为H7N9H1N1H5N1,肺组织病理损伤严重程度依次为H5N1H1N1H7N9,PCNA表达水平依次为H7N9H1N1H5N1。结论 H7N9病毒感染后宿主炎症反应较小,感染后小鼠肺组织自我修复能力较强;H5N1病毒感染BALB/c小鼠后的机体反应最为强烈,感染后恢复能力差,致死率高。  相似文献   

2.
Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors. Supported by the National Basic Research Program of China (Grant Nos. 2005CB523001, 2005CB523002), National Key Technologies Research & Development Program (Grant 2006BAD06A01/2006BAD06A04); US National Institutes of Health (NIH) (Grant 3 U19 AI051915-05S1), the National Natural Science Foundation of China (Grant 30599434). GAO FG is a distinguished young investigator of the NSFC (Grant No. 30525010).  相似文献   

3.
H5N1 highly pathogenic avian influenza (HPAI) viruses have seriously affected the Asian poultry industry since their recurrence in 2003. The viruses pose a threat of emergence of a global pandemic influenza through point mutation or reassortment leading to a strain that can effectively transmit among humans. In this study, we present phylogenetic evidences for the interlineage reassortment among H5N1 HPAI viruses isolated from humans, cats, and birds in Indonesia, and identify the potential genetic parents of the reassorted genome segments. Parsimony analyses of viral phylogeography suggest that the reassortant viruses may have originated from greater Jakarta and surroundings, and subsequently spread to other regions in the West Java province. In addition, Bayesian methods were used to elucidate the genetic diversity dynamics of the reassortant strain and one of its genetic parents, which revealed a more rapid initial growth of genetic diversity in the reassortant viruses relative to their genetic parent. These results demonstrate that interlineage exchange of genetic information may play a pivotal role in determining viral genetic diversity in a focal population. Moreover, our study also revealed significantly stronger diversifying selection on the M1 and PB2 genes in the lineages preceding and subsequent to the emergence of the reassortant viruses, respectively. We discuss how the corresponding mutations might drive the adaptation and onward transmission of the newly formed reassortant viruses.  相似文献   

4.
Hu Y  Jin Y  Han D  Zhang G  Cao S  Xie J  Xue J  Li Y  Meng D  Fan X  Sun LQ  Wang M 《Journal of virology》2012,86(6):3347-3356
Although an important role for mast cells in several viral infections has been demonstrated, its role in the invasion of highly pathogenic H5N1 influenza virus is unknown. In the present study, we demonstrate that mast cells were activated significantly by H5N1 virus (A/chicken/Henan/1/2004) infection both in vivo and in vitro. Mast cells could possibly intensify the lung injury that results from H5N1 infection by releasing proinflammatory mediators, including histamine, tryptase, and gamma interferon (IFN-γ). Lung lesions and apoptosis induced by H5N1 infection were reduced dramatically by treatment with ketotifen, which is a mast cell degranulation inhibitor. A combination of ketotifen and the neuraminidase inhibitor oseltamivir protected 100% of the mice from death postinfection. In conclusion, our data suggest that mast cells play a crucial role in the early stages of H5N1 influenza virus infection and provide a new approach to combat highly pathogenic influenza virus infection.  相似文献   

5.
The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.  相似文献   

6.
The evolutionary dynamics of the H5N1 virus present a challenge for conventional control measures. Efforts must consider the regional aspects of endemic H5N1.The H5N1 virus has spread across Asia, Europe and Africa, and has infected birds in several endemic areas, including China, Indonesia, Vietnam and Egypt. H5N1 outbreaks pose a massive threat for the poultry industry and, ultimately, for human health [1]. However, the rapid spread of the virus also offers the opportunity to study and learn from its dynamics in the wild. The insights gained should inform new public health policies and preventive actions against a possible pandemic.Progress in influenza research has been impressive. In particular, the application of reverse genetics has led to the identification of mutations and reassortment changes that determine virus virulence. Perhaps the most significant results come from the two now infamous studies, published in Nature and Science, about the generation of recombinant H5N1 viruses that are transmissible in ferrets [2,3]. These advances show that we are steadily elucidating influenza virus at the molecular level. By contrast, our understanding of the dynamics of highly pathogenic influenza virus in the environment remains limited [4,5].Highly pathogenic avian influenza (HPAI) is an important poultry disease. The major reservoir of the virus is wild waterfowl, and infected birds are usually asymptomatic as a result of long-term evolutionary adaptation [1,6]. After transmission from wild waterfowl to poultry, however, avian influenza viruses occasionally become highly pathogenic and can cause mortalities of up to 100% within 48 h of infection. The standard method for controlling an HPAI outbreak is the testing and culling of all infected poultry, and the setting up of a concentric control area around the infected flock.The HPAI H5N1 virus, circulating in Eurasia and Africa, emerged in China around 1997 [1] but it only infected terrestrial birds at the time. Continuous transmission in poultry eventually allowed the virus to evolve, resulting in large outbreaks in China in 2005 with high mortality in wild waterfowl. The virus spread rapidly, probably though migratory birds, to Central Asia, Europe, the Middle East and Africa. Such ‘east to west'' movements of H5N1 viruses over comparably long distances have not since been recorded. Moreover, migrating wildfowl have begun to spread the virus intermittently between Asia and Siberia [7]. This H5N1 lineage is the longest-circulating HPAI virus that has been reported, and it has reached epizootic levels in both domestic and wild bird populations.…the challenge is to understand the evolution of H5N1 to better predict new strains that could become a serious threat for human healthOne of the striking characteristics of the H5N1 lineage, in contrast with other HPAI, is its infectivity toward mammals. H5N1 can be directly transmitted from birds to humans and cause severe disease, although it has a significantly lower transmissibility than seasonal influenza viruses [1]. So far, 608 cases of human H5N1 infections have been reported with 59% mortality [5]. Most human infections have resulted from close contact with H5N1-infected poultry or poultry products, and no sustained human–human transmission has as yet been documented. Nonetheless, a potential H5N1 pandemic remains a great concern for public health.The viruses that caused the five influenza pandemics since 1900 arose by two mechanisms: reassortment among avian, human and swine influenza viruses, and accumulation of mutations in an avian influenza virus [1,8]. Triple reassortment between avian H5N1, swine H3N1 and H1N1 viruses, and double reassortment between avian H5N1 and H9N2 viruses has already been reported in Asia, which raises concerns about new reassortment viruses that could infect humans [9,10]. Meanwhile, research has identified some 80 genetic mutations that could increase infectivity of avian influenza viruses in mammals, and thus potentially facilitate avian influenza evolution to generate a pandemic strain [8,11]. H5N1 strains with some of these mutations have often been found in bird populations [5] and in human H5N1 strains [12]. Indeed, specific mutations that could confer switching in receptor-binding specificity were reported in H5N1-infected patients in Thailand [13]. The two controversial studies published in Nature and Science also showed how a handful of mutations might enable the H5N1 virus to be transmitted between humans [2,3]. Pathogenic variants of the H5N1 virus with a higher pandemic potential could naturally evolve; the challenge is to understand the evolution of H5N1 to better predict new strains that could become a serious threat for human health.…continuous replication of H5N1 virus in Egypt has provided a valuable opportunity to study the impact of genetic evolution on phenotypic variation without reassortmentThe evolutionary dynamics of the Egyptian H5N1 strains provide clues to understanding the pandemic potential of H5N1. The virus was introduced only once in Egypt, in early 2006, and spread among a variety of bird species, including chickens, ducks, turkeys, geese and quail [14]. The virus rapidly evolved to form a phylogenetically distinct clade that has since diverged into multiple sublineages [15]. Thus, continuous replication of H5N1 virus in Egypt has provided a valuable opportunity to study the impact of genetic evolution on phenotypic variation without reassortment.After diversification in local bird populations, some new H5 sublineages have emerged in Egypt with a higher affinity for human-type receptors. Indeed, since their emergence in 2008, almost all human H5N1 strains in Egypt have been phylogenetically grouped into these new sublineages, which can be transmitted to humans with a higher efficacy than other avian influenza viruses. This might explain why, since 2009, Egypt has had the highest number of human cases of H5N1 infection, with more than 50% of the cases worldwide [5]. Fortunately, these Egyptian H5N1 sublineages still do not have binding affinity for receptors in the upper respiratory tract and, therefore, do not sustain transmission in humans. However, it increases the risk of H5N1 variants that are better adapted to humans after viral replication in infected patients.…Egypt is regarded as the country with the highest H5N1 pandemic potential worldwideThe Egyptian H5N1 sublineages are also diversifying antigenically in the field, as some are no longer crossreactive to other co-circulating sublineages [15]. Moreover, faint traces of species-specific evolutionary changes have been detected [16], implying a change in their host species. It shows that the H5N1 virus has undergone significant diversification in Egypt during the past seven years. Of greater concern, however, are Egyptian H5N1 strains that carry mammalian influenza virus type PB2 and have lost the N-linked 158 glycosylation site in the top region of haemagglutinin [15,17], both of which can potentially facilitate viral transmission to humans. The genetic diversification of H5N1 virus in Egypt represents an increasing pandemic potential, and Egypt is regarded as the country with the highest H5N1 pandemic potential worldwide [18].A similar situation exists in other geographical areas. Multiple clades and sublineages of H5N1 are co-circulating in Asia, occasionally enabling reassortment events within and beyond the viral subtypes in the field [19,20]. Several H5N1 strains with enhanced binding affinity to human-type receptors have been reported in Indonesia [12]. Similarly, avian and swine H5N1 strains with an altered receptor-binding preference have been isolated sporadically in Indonesia and Laos [21,22]. As in other areas, distinct groups of H5N1 viruses are circulating amongst themselves and with other avian influenza viruses, generating diverse viral phenotypes in nature. The evolutionary dynamics of H5N1 might even accelerate in the wild. H5N1 viruses diverge genetically in ducks [23]; they can transfer the virus over long distances by migration. Thus, the H5N1 virus has established a complex life cycle in nature with accelerated evolutionary dynamics. The pandemic threat of H5N1 remains a serious concern and might be increasing.Control measures based on isolating and culling are still the gold standard for controlling the early phase of an H5N1 outbreak, and worked against the H5N1 outbreaks in Hong Kong in 1997 and in Thailand in 2004 [4]. However, this measure failed in several countries and made H5N1 endemic. Cross-border circulation of H5N1 further complicates implementation of a classical control strategy based on culling in the infected area.In response, public health officials in several countries, including Egypt and Indonesia, advocate poultry vaccination as a preventive or adjunct control measure [1]. Although vaccination does not completely prevent infections, its proper use can help to control avian influenza outbreaks by reducing virus transmission from infected animals. However, it can also increase vaccine-driven evolution among avian influenza viruses. The endemic status of H5N1, which can cause devastating local epidemics, puts pressure on health officers to use a vaccine or a vaccination strategy that might eventually increase selective pressure and thereby accelerate H5N1 evolution. Given the high mutability and diversity of circulating viruses, it seems best to avoid using a vaccine based on a strain from a different geographical area because there would only be a partial antigen match; such a heterologous vaccine would only be effective in the short term compared with a homologous vaccine. During past control of H5N1 epidemics using imported vaccines, escape mutants have emerged within about a year of the start of vaccination, which made the epidemic even worse [14]. When a vaccination strategy is implemented in an endemic area, the vaccine seed strain should be selected from the same geographical area to try to get the longest possible protection. Vaccine seed virus selection must be periodically revised to produce well-matched and efficacious vaccines.Close communication and workshops hold the greatest potential for controlling the H5N1 virusIn most cases, H5 vaccine for an endemic area comes from a foreign supplier. It would be necessary to enable foreign manufacturers to produce customized H5 vaccines based on epidemic strains from different areas. The best approach might be a plasmid-based reverse genetics system to construct vaccine seed viruses [1]. In egg-based production, which is the basis of flu vaccine production, the seed virus needs to be adapted for high growth. This time-consuming step carries the risk of antigenic changes during vaccine production. Yet, advances in influenza reverse genetics have led to the development of cell culture systems to produce recombinant viruses, which would enable rapid genetic mutagenesis and reassortment. Once reverse genetics generates a virus genome that is well adapted to growth in cell culture, the haemagglutinin and neuraminidase genes can be easily interchanged with those of other influenza viruses. In addition, virus growth in cell culture can shorten production time, which increases the probability of selecting a seed virus antigenically appropriate for the upcoming flu season, and enables a rapid increase in production if necessary [24].A control strategy imposed without consideration of regional customs will not be successfulGiven the zoonotic risks of influenza viruses to both humans and animals, the establishment of a vaccine production system applicable to both human and animal infections is an urgent issue. The capacity of vaccine production needs to be flexible for seasonal, pre-pandemic and pandemic vaccines. Advances in genetic engineering facilitate in vitro control of human- and avian-type receptor expression on cultured cells, which should allow both human and avian influenza viruses to grow in the same system. As vaccine production capacity based on cell culture develops, commercial production of H5N1 vaccines tailored to each geographical area should become possible. In addition, emergency vaccination guidelines, such as pre-pandemic vaccine stockpiling, expanding and accelerating vaccine production and setting vaccination priorities, should be formulated in a business–government partnership, to ensure pandemic preparation. There is no guarantee that the H5N1 virus will be the next pandemic influenza strain. However, exploring options for versatile vaccine manufacturing is a key to controlling zoonotic influenza viruses, including H5N1.The complexity of H5N1 ecology also makes control of endemic H5N1 by vaccination a complex task. The problem is that antigenically different groups of viruses, which are not crossreactive, are often co-circulating in endemic areas. Circulation of viruses in each sublineage is not restricted in terms of geography or host species, which complicates efforts to use a vaccine produced against antigens from a single virus strain [15]. Of greater concern, H5N1 virus infects a variety of bird species [1], which means the vaccination targets have expanded. Bird species differ in their optimal vaccination protocol—for example, the single vaccination used routinely in chickens does not induce an adequate immune response in turkeys, which require multi-dose vaccination at an older age [25]. Furthermore, rearing many bird species and their hybrid breeds in uncontrolled confinement is common in H5N1 endemic countries, especially in rural areas. Therefore, the immunogenicity of existing vaccines is probably inadequate to protect all target species with a single vaccination scheme. Endemic H5N1 already forces public health officials to redefine vaccine development policy to improve both vaccine immunogenicity and vaccination regime.Unfortunately, it is unlikely that science will ever produce a clear answer as to when, where and how the next pandemic influenza virus will emergeToday, there are numerous techniques that could overcome these problems by increasing immunogenic potency and crossreactivity. Innovative vaccine formats—multivalent, universal, nasal and synthetic vaccines—possibly coupled with the use of adjuvants, could improve the global vaccine supply [24]. These new technologies should be applied as soon as possible. Nevertheless, no single technique can probably resolve the underlying complexity of H5N1 dynamics. Over-reliance on vaccination might therefore only worsen the situation. Vaccination can help control endemic H5N1 only when administered as part of an integrated control programme that includes surveillance, culling, restricting host movement and enhanced quarantine and biosecurity.The complex evolutionary dynamics of the H5N1 virus are challenging host species barriers and the ecology brings H5N1 into close proximity to humans [1]. The close link between the virus and humans is a multifaceted phenomenon that can affect health in myriad ways. Thus, we need to redefine control strategies to address the nature of H5N1 dynamics. Surveillance is the basis of infection control in the field. Wild birds and their predators should be included as surveillance targets, thereby expanding the H5N1 host species range. Another drawback is the fact that epidemiological studies focus mainly on virus genotyping. Although genetic data is informative, the diversity of H5N1 viruses makes characterization based only on genetic traits difficult. Characterization of viral phenotypes—antigenicity, receptor-binding preference, pathogenicity and transmissibility—is equally important for investigating the evolutionary dynamics of H5N1 viruses in nature. We would need techniques to determine easily viral phenotype, in particular new rapid diagnostic systems that can be used for timely epidemiological investigations and rapid infection control measures [1]. For example, portable kits that can determine virus receptor specificity would allow field testing of whether a particular avian influenza virus strain has adapted to human-type receptors, thereby adding a new dimension for characterizing and assessing H5N1 outbreaks.Our perception of H5N1 control should change from short-term hunting to long-term controlThe large-scale slaughter of all known and suspected infected birds in H5N1 endemic countries is hugely expensive in terms of execution costs and compensation for lost poultry. Financial assistance from international organizations might be needed to promote the thorough implementation of such a policy. However, H5N1 endemic countries are not all poor nations and some have already built a certain level of technology infrastructure. Thus, transfer of epidemiological skills and concepts to local health officers and scientists is a priority. Overseas collaborations between technologically developed countries and their institutions, and H5N1 endemic countries and their institutions, should be established at a functional level. Close communication and workshops hold the greatest potential for controlling the H5N1 virus. Such projects supported by governments and funding agencies would encourage establishment of bilateral and multilateral relationships between developed countries and the developing countries, which are the epicentres of H5N1 outbreaks. Sharing information about risk and risk management is one of the key methods for reducing the threat of future H5N1 epidemics.Globalization has had major benefits for international travel and trade, and sharing of information. The improvements in information technology have dramatically increased the speed and ease of data flow [26]. Intelligence networks facilitate instantaneous sharing of information and enable global warnings about potential hazards as well as problem-solving. Moreover, collaborative research centres, which have been established on reciprocal bases between scientifically advanced countries and institutes and overseas partner countries and institutes in Asia, Africa and Latin America, are important players in information networking—for instance the Institute Pasteur Network, the Mahidol Oxford Tropical Medicine Research Unit and Japan Initiative for Global Research Network on Infectious Diseases. Linking such laboratory-based networks should be the next step. This would have a profound synergistic effect by maximizing research capacity, human resources and geographic coverage to build a robust global-scale network for infection control.However, regional socio-cultural issues can be a significant concern for virus control wherever accepted values and scientific understanding might differ. Multiple local and regional factors—customs, religion, politics and economics—can affect H5N1 control in an area. Successful implementation of an H5N1 control strategy depends largely on mutual understanding and consideration of local idiosyncrasies.Some examples from Egypt show how regional identity can be closely linked with local public health initiatives. Egypt is an Islamic nation and bird meat is an important source of animal protein, and the only source in some rural areas [14]. A large proportion of Egyptian households in rural areas raise poultry. Although broiler and layer chickens are raised under modern hygienic controls on commercial farms, backyard birds are raised in open uncontrolled farms, leaving them free to interact with other birds (Fig 1A). The poultry meat trade depends mainly on live bird markets in traditional bazaars (Fig 1B), because of a preference for freshly slaughtered poultry. Pigeon towers are built on farms, backyards and roofs throughout villages to raise pigeons for eating. Generally, birds in Egypt are raised in proximity to humans (Fig 1C), which presents an increasing risk of human H5N1 infection in Egypt and establishment of endemic H5N1 in birds nationwide.Open in a separate windowFigure 1Socio-cultural traditions in rearing birds for food in Egypt. (A) Free rearing of backyard birds. (B) Live birds at a downtown market. (C) An example of the intertwined relationship between birds and humans.Such regional identity is inseparable from socio-cultural contexts, making fundamental change virtually impossible. Although there are many scenarios in which a local public health system could be improved by food safety standards and veterinary inspection or short-term closing of live bird markets for virus clearance, H5N1 control measures have to be implemented whilst respecting the intrinsic socio-cultural traditions in the region. A control strategy imposed without consideration of regional customs will not be successful. It is the local health officers and scientists who are best suited to address the enormous complexity and breadth of issues required for H5N1 control. They also experience H5N1 outbreaks in their area on a regular basis and have a great incentive to be involved in infection control. Therefore, it is important to include local expertise in planning and implementing a control strategy.Science in an area such as infectious disease research can no longer be viewed as independent of societal needs…Science is frequently looked at as if it can produce a ‘silver bullet'' to solve every problem. Early success in vaccine and antibiotic development also created a false sense of optimism that scientific methods could eliminate the risk of infection. However, the reality has turned out to be different—some infectious diseases remain uncontrollable and far from eradication. Given the mutable and diversifying nature of avian influenza viruses, there is a significant possibility that different avian influenza subtypes and strains do not follow a single evolutionary pathway. Unfortunately, it is unlikely that science will ever produce a clear answer as to when, where and how the next pandemic influenza virus will emerge. Our perception of H5N1 control should change from short-term hunting to long-term control. The ecology of H5N1 virus brings it into close proximity to humans. The most important strategy is to minimize contact between terrestrial poultry and wild waterfowl to segregate H5N1 in poultry, because H5N1 spread would be uncontrollable if it established a stable equilibrium in waterfowl. For example, H5N1 viruses in Siberia have not been consistently isolated each year from carcasses and faeces of wildfowl migrating from Asia [7]. This implies that H5N1 circulation in the wild still largely depends on occasional introduction from poultry. It is possible that trials to limit H5N1 infection in poultry would lead to a reduction in viral spread and a dwindling evolutionary path in nature. Infection control policy must abandon fixed strategies in favour of flexible ones to keep pace with the evolutionary dynamics of pathogens such as H5N1 (Fig 2).Open in a separate windowFigure 2Changing dynamics of H5N1 virus in the field. Endemic H5N1 virus diversifies in nature, making traditional control measures extremely difficult.Today''s infection control strategy is becoming largely dependent on the reliability and accuracy of information networking. However, the vast flood of scientific information can hide erroneous information and easily mislead the public [26]. Of greater concern, globalization has prompted the centralization of capital and resources, which can lead to an overemphasis on certain research topics. As a consequence, research projects are often short term, without consideration of effects that might have a long-term social impact [27]. This has led to a debate about whether to limit publication of certain types of research or keep scientific information completely accessible. There is probably no easy answer to this. Our global society needs a more mature approach to support research projects that are accurate reflections of societal needs in public health. At the same time, the increasing links between science and society put more pressure on science to play a greater role in society. This is a serious dilemma—how to use science to solve societal problems whilst maintaining its autonomy [27]. Science in an area such as infectious disease research can no longer be viewed as independent of societal needs; we need to establish a balance between the pursuit of independent basic research and its application for solving clinical problems and crises.? Open in a separate windowYohei WatanabeOpen in a separate windowKazuyoshi IkutaOpen in a separate windowMadiha S Ibrahim  相似文献   

7.
目的比较分析H7N9病毒与H1N1病毒感染小鼠病理学损伤特点,初步探讨两种病毒感染致小鼠急性肺损伤的致病机制。方法 H7N9病毒与H1N1病毒分别感染小鼠,观察不同病毒感染后小鼠生存率,并于不同时间点取心、肝、脾、肺、肾、脑、肠等组织,伊红-苏木素染色并进行组织病理学分析,免疫组化检测病毒抗原分布及中性粒细胞浸润。综合分析肺组织病理损伤与病毒复制、宿主免疫反应之间的关系。结果 H7N9病毒感染小鼠肺及脾脏损伤较轻,存活率较高。H1N1病毒感染的小鼠肺及脾脏损伤较重,感染后9 d全部死亡;两种病毒抗原主要分布于支气管上皮细胞、少量间质细胞和肺泡上皮细胞,病毒复制水平无明显差异。但H1N1病毒感染后肺及脾脏中均有大量中性粒细胞浸润,小鼠机体炎症反应明显强于H7N9病毒感染后小鼠炎症反应。结论 H7N9病毒与H1N1病毒感染后小鼠病理学损伤特点及程度均不同,病毒复制是小鼠肺损伤的诱发因素但并非决定因素,宿主针对病毒感染产生的免疫反应程度与急性肺损伤密切相关。  相似文献   

8.
Since its emergence in China in 1996, highly pathogenic avian influenza virus subtype H5N1 has spread across Asia, Africa, and Europe. Countries had to promptly implement control and prevention measures. Numerous research and capacity building initiatives were conducted in the affected regions to improve the capacity of national animal health services to support the development of risk-based mitigation strategies. This paper reviews and discusses risk assessments initiated in several South-East Asian and African countries under one of these projects. Despite important data gaps, the risk assessment results improved the ability of policy makers to design appropriate risk management policies. Disease risk was strongly influenced by various human behavioral factors. The ongoing circulation of HPAIV H5N1 in several Asian countries and in Egypt, despite major disease control efforts, supports the need for an interdisciplinary approach to development of tailored risk management policies, in accordance with the EcoHealth paradigm and the broad concept of risk governance. In particular, active stakeholders engagement and integration of economic and social studies into the policy making process are needed to optimize compliance and sustainable behavioral changes, thereby increasing the effectiveness of mitigation strategies.  相似文献   

9.
Migratory birds have evolved elaborate physiological adaptations to travelling, the implications for their susceptibility to avian influenza are however unknown. Three groups of stonechats (Saxicola torquata) from (I) strongly migrating, (II) weakly migrating and (III) non-migrating populations were experimentally infected with HPAIV H5N1. The different bird groups of this insectivorous passerine species were infected in autumn, when the migrating populations clearly exhibit migratory restlessness. Following infection, all animals succumbed to the disease from 3 through 7 days post inoculation. Viral shedding, antigen distribution in tissues, and survival time did not differ between the three populations. However, notably, endothelial tropism of the HPAIV infection was exclusively seen in the group of resident birds. In conclusion, our data document for the first time the high susceptibility of an insectivorous passerine species to H5N1 infection, and the epidemiological role of these passerine birds is probably limited due to their high sensitivity to HPAIV H5N1 infection. Despite pronounced inherited differences in migratory status, the groups were generally indistinguishable in their susceptibility, survival time, clinical symptoms and viral shedding. Nevertheless, the migratory status partly influenced pathogenesis in the way of viral tropism.  相似文献   

10.
11.

Background

Human cytomegalovirus (HCMV) is the most common pathogen in uterus during pregnancy, which may lead to some serious results such as miscarriage, stillbirth, cerebellar malformation, fetus developmental retardation, but its pathogenesis has not been fully explained. The hypofunction of extravillous cytotrophoblast (EVT) invasion is the essential pathologic base of some complications of pregnancy. c-erbB-2 is a kind of oncogene protein and closely linked with embryogenesis, tissue repair and regeneration. Matrix metalloproteinase (MMP) is one of the key enzymes which affect EVT migration and invasion function. The expression level changes of c-erbB-2, MMP-2 and MMP-9 can reflect the changes of EVT invasion function.

Results

To explore the influence of HCMV on the invasion function of EVT, we tested the protein expression level changes of c-erbB-2, MMP-2 and MMP-9 in villous explant cultured in vitro infected by HCMV, with the use of immunohistochemistry SP method and western blot. We confirmed that HCMV can reproduce and spread in early pregnancy villus; c-erbB-2 protein mainly expressed in normal early pregnancy villous syncytiotrophoblast (ST) remote plasma membrane and EVT, especially remote EVT cell membrane in villous stem cell column, little expressed in ST proximal end cell membrane and interstitial cells; MMP-2 protein primarily expressed in early pregnancy villous EVT endochylema and rarely in villous trophoblast (VT), ST and interstitial cells; MMP-9 protein largely expressed in early pregnancy villous mesenchyme, EVT and VT endochylema. Compared with control group, the three kinds of protein expression level in early pregnancy villus of virus group significantly decreased (P < 0.05).

Conclusion

HCMV can infect villus in vitro and cause the decrease of early pregnancy villous EVT's invasion function.  相似文献   

12.

Background

Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.

Methods and Findings

Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.

Conclusion

In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.  相似文献   

13.
To determine whether avian H5N1 influenza viruses associated with human infections in Vietnam had transmitted to pigs, we investigated serologic evidence of exposure to H5N1 influenza virus in Vietnamese pigs in 2004. Of the 3,175 pig sera tested, 8 (0.25%) were positive for avian H5N1 influenza viruses isolated in 2004 by virus neutralization assay and Western blot analysis. Experimental studies of replication and transmissibility of the 2004 Asian H5N1 viruses in pigs revealed that all viruses tested replicated in the swine respiratory tract but none were transmitted to contact pigs. Virus titers from nasal swabs peaked on day 2, and low titers were detected in the liver of two of the four pigs tested. Our findings indicate that pigs can be infected with highly lethal Asian H5N1 viruses but that these viruses are not readily transmitted between pigs under experimental conditions.  相似文献   

14.
This study profiled the plasma proteins of patients infected by the 2011 H1N1 influenza virus. Differential protein expression was identified in plasma obtained from noninfected control subjects (n = 15) and H1N1‐infected subjects (n = 15). Plasma proteins were separated by a 2DE large gel system and identified by nano‐ultra performance LC‐MS. Western blot assays were performed to validate proteins. Eight plasma proteins were upregulated and six proteins were downregulated among 3316 plasma proteins in the H1N1‐infected group as compared with the control group. Of 14 up‐ and downregulated proteins, nine plasma proteins were validated by Western blot analysis. Putative protein FAM 157A, leucine‐rich alpha 2 glycoprotein, serum amyloid A protein, and dual oxidase 1 showed significant differential expression. The identified plasma proteins could be potential candidates for biomarkers of H1N1 influenza viral infection. Further studies are needed to develop these proteins as diagnostic biomarkers.  相似文献   

15.

Background

Disease transmission patterns are needed to inform public health interventions, but remain largely unknown for avian influenza H5N1 virus infections. A recent study on the 139 outbreaks detected in Indonesia between 2005 and 2009 found that the type of exposure to sources of H5N1 virus for both the index case and their household members impacted the risk of additional cases in the household. This study describes the disease transmission patterns in those outbreak households.

Methodology/Principal Findings

We compared cases (n = 177) and contacts (n = 496) in the 113 sporadic and 26 cluster outbreaks detected between July 2005 and July 2009 to estimate attack rates and disease intervals. We used final size household models to fit transmission parameters to data on household size, cases and blood-related household contacts to assess the relative contribution of zoonotic and human-to-human transmission of the virus, as well as the reproduction number for human virus transmission. The overall household attack rate was 18.3% and secondary attack rate was 5.5%. Secondary attack rate remained stable as household size increased. The mean interval between onset of subsequent cases in outbreaks was 5.6 days. The transmission model found that human transmission was very rare, with a reproduction number between 0.1 and 0.25, and the upper confidence bounds below 0.4. Transmission model fit was best when the denominator population was restricted to blood-related household contacts of index cases.

Conclusions/Significance

The study only found strong support for human transmission of the virus when a single large cluster was included in the transmission model. The reproduction number was well below the threshold for sustained transmission. This study provides baseline information on the transmission dynamics for the current zoonotic virus and can be used to detect and define signatures of a virus with increasing capacity for human-to-human transmission.  相似文献   

16.
<正>Since 1997, highly pathogenic avian influenza (HPAI) H5N1 viruses have caused serious outbreaks in poultry and markets. In human, overall mortality in HPAI H5N1 infection exceeds 60%, but human to human transmission is limited and has been only reported within family members[7,8].There is much concern as to whether H5N1 can enhance its transmission among humans through genetic variation. Further,there is an urgent need to discover the potential mutations in viral proteins that are responsible for inter-human transmission.  相似文献   

17.
Lam TT  Hon CC  Lemey P  Pybus OG  Shi M  Tun HM  Li J  Jiang J  Holmes EC  Leung FC 《Molecular ecology》2012,21(12):3062-3077
Understanding how pathogens invade and become established in novel host populations is central to the ecology and evolution of infectious disease. Influenza viruses provide unique opportunities to study these processes in nature because of their rapid evolution, extensive surveillance, large data sets and propensity to jump species boundaries. H5N1 highly pathogenic avian influenza virus (HPAIV) is a major animal pathogen and public health threat. The virus is of particular importance in Indonesia, causing severe outbreaks among poultry and sporadic human infections since 2003. However, little is known about how H5N1 HPAIV emerged and established in Indonesia. To address these questions, we analysed Indonesian H5N1 HPAIV gene sequences isolated during 2003-2007. We find that the virus originated from a single introduction into East Java between November 2002 and October 2003. This invasion was characterized by an initially rapid burst of viral genetic diversity followed by a steady rate of lineage replacement and the maintenance of genetic diversity. Several antigenic sites in the haemagglutinin gene were subject to positive selection during the early phase, suggesting that host-immune-driven selection played a role in host adaptation and expansion. Phylogeographic analyses show that after the initial invasion of H5N1, genetic variants moved both eastwards and westwards across Java, possibly involving long-distance transportation by humans. The phylodynamics we uncover share similarities with other recently studied viral invasions, thereby shedding light on the ecological and evolutionary processes that determine disease emergence in a new geographical region.  相似文献   

18.
Twu KY  Kuo RL  Marklund J  Krug RM 《Journal of virology》2007,81(15):8112-8121
The NS1A proteins of human influenza A viruses bind CPSF30, a cellular factor required for the processing of cellular pre-mRNAs, thereby inhibiting the production of all cellular mRNAs, including beta interferon mRNA. Here we show that the NS1A protein of the pathogenic H5N1 influenza A/Hong Kong/483/97 (HK97) virus isolated from humans has an intrinsic defect in CPSF30 binding. It does not bind CPSF30 in vitro and causes high beta interferon mRNA production and reduced virus replication in MDCK cells when expressed in a recombinant virus in which the other viral proteins are encoded by influenza A/Udorn/72. We traced this defect to the identities of amino acids 103 and 106 in the HK97 NS1A protein, which differ from the consensus amino acids, F and M, respectively, found in the NS1A proteins of almost all human influenza A virus strains. X-ray crystallography has shown that F103 and M106, which are not part of the CPSF30 binding pocket of the NS1A protein, stabilize the NS1A-CPSF30 complex. In contrast to the HK97 NS1A protein, the NS1A proteins of H5N1 viruses isolated from humans after 1998 contain F103 and M106 and hence bind CPSF30 in vitro and do not attenuate virus replication. The HK97 NS1A protein is less attenuating when expressed in a virus that also encodes the other internal HK97 proteins and under these conditions binds to CPSF30 to a substantial extent in vivo. Consequently, these internal HK97 proteins largely compensate for the absence of F103 and M106, presumably by stabilizing the NS1A-CPSF30 complex.  相似文献   

19.
20.
Y Gao  Z Wen  K Dong  G Zhong  X Wang  Z Bu  H Chen  L Ye  C Yang 《PloS one》2012,7(7):e41332
The evolution of the H5N1 highly pathogenic avian influenza virus (HPAIV) has resulted in high sequence variations and diverse antigenic properties in circulating viral isolates. We investigated immune responses induced by HA DNA vaccines of two contemporary H5N1 HPAIV isolates, A/bar-headed goose/Qinghai/3/2005 (QH) and A/chicken/Shanxi/2/2006 (SX) respectively, against the homologous as well as the heterologous virus isolate for comparison. Characterization of antibody responses induced by immunization with QH-HA and SX-HA DNA vaccines showed that the two isolates are antigenically distinctive. Interestingly, after immunization with the QH-HA DNA vaccine, subsequent boosting with the SX-HA DNA vaccine significantly augmented antibody responses against the QH isolate but only induced low levels of antibody responses against the SX isolate. Conversely, after immunization with the SX-HA DNA vaccine, subsequent boosting with the QH-HA DNA vaccine significantly augmented antibody responses against the SX isolate but only induced low levels of antibody responses against the QH isolate. In contrast to the antibody responses, cross-reactive T cell responses are readily detected between these two isolates at similar levels. These results indicate the existence of original antigenic sin (OAS) between concurrently circulating H5N1 HPAIV strains, which may need to be taken into consideration in vaccine development against the potential H5N1 HPAIV pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号