首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA.  相似文献   

2.
The initiation region of the SV40 VP1 gene.   总被引:13,自引:0,他引:13  
The sequence of 15 nucleotides located at the 5' terminus of the plus strand of the SV40 Hind K fragment has been determined as (5') A-G-C-T-T-A-T-G-A-A-G-A-T-G-G (3'). The 3' on OH terminal G of this segment is part of the G-C-C codeword for the N terminal alanine of the VP1 protein. This region therefore presumably corresponds to a ribosome binding site on the 16S late mRNA. Complementarily to the 3' OH of eucaryotic 18S ribosomal RNA and homology with the BMV coat ribosome binding site are discussed.  相似文献   

3.
In vitro processing of B. mori transfer RNA precursor molecules.   总被引:8,自引:0,他引:8  
R L Garber  S Altman 《Cell》1979,17(2):389-397
Ribonuclease P and 3'-5' nuclease, two enzymatic activities necessary for tRNA synthesis in E. coli, are also found in the silkgland cells of Bombyx mori. B. mori subcellular extracts containing RNAase P activity can cleave the E. coli tRNA precursor molecule endonucleolytically at the same site as the E. coli enzyme, and will also cleave in vitro all E. coli tRNA precursors (pre-tRNAs) which the bacterial enzyme recognizes. B. mori RNAase P will not cleave two E. coli RNAase P substrates that are structurally unrelated to tRNA. Pre-tRNAs from B. mori contain extra 5' and 3' nucleotides as judged by RNA fingerprinting and 5' terminal phosphate analysis. Crude silkgland extracts containing both RNAase P and 3'-5' nuclease can remove the 5' and 3' extra nucleotides from B. mori pre-tRNAs, whereas purified fractions containing RNAase P remove only 5' extra nucleotides. Only large silkworm pre-tRNAs were found to be susceptible to cleavage by B. mori RNAase P. This observation and sequence analysis of intermediates of in vitro processing reactions indicate a two-step process of pre-tRNA maturation in which extra 5' nucleotides are first removed by RNAase P and extra 3' nucleotides are then trimmed off by a 3'-5' nuclease.  相似文献   

4.
本文测定了蓖麻蚕18S rRNA基因(rDNA) 3′末端及其外侧的DNA顺序。将这一顺序与家蚕、果蝇、大鼠 18S rDNA 3′末端顺序以及大肠杆菌16 S rDNA 3′末端顺序作了比较,发现它们间有惊人的同源性。不仅如此,这些基因的3′末端所形成的茎环结构也十分相似,在3′末端还有保守的EcoRI切点。这些研究结果对了解18S rRNA 3′末端在蛋白质合成中的功能及在rRNA前体加工成熟中的作用;对于了解rRNA基因的进化打下了基础。  相似文献   

5.
6.
The NS5B protein of the classical swine fever virus (CSFV) is the RNA-dependent RNA polymerase of the virus and is able to catalyze the viral genome replication. The 3' untranslated region is most likely involved in regulation of the Pestivirus genome replication. However, little is known about the interaction between the CSFV NS5B protein and the viral genome. We used different RNA templates derived from the plus-strand viral genome, or the minus-strand viral genome and the CSFV NS5B protein obtained from the Escherichia coli expression system to address this problem. We first showed that the viral NS5B protein formed a complex with the plus-strand genome through the genomic 3' UTR and that the NS5B protein was also able to bind the minus-strand 3' UTR. Moreover, it was found that viral NS5B protein bound the minus-strand 3' UTR more efficiently than the plus-strand 3' UTR. Further, we observed that the plus-strand 3' UTR with deletion of CCCGG or 21 continuous nucleotides at its 3' terminal had no binding activity and also lost the activity for initiation of minus-strand RNA synthesis, which similarly occurred in the minus-strand 3' UTR with CATATGCTC or the 21 nucleotide fragment deleted from the 3' terminal. Therefore, it is indicated that the 3' CCCGG sequence of the plus-strand 3' UTR, and the 3' CATATGCTC fragment of the minus-strand are essential to in vitro synthesis of the minus-strand RNA and the plus-strand RNA, respectively. The same conclusion is also appropriate for the 3' 21 nucleotide terminal site of both the 3' UTRs.  相似文献   

7.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

8.
9.
E G Niles 《Biochemistry》1977,16(11):2380-2383
Ribonuclease T1 oligonucleotides arising from the 5' and 3' termini of the 17S rRNA of Tetrahymena pyriformis were isolated by the diagonal method of Dahlberg (Dahlberg, J. E. (1968), Nature (London) 220, 548), and their nucleotide sequences were determined. The base sequence of the 3'-terminal fragment is (G)AUCAUUAoh, which is identical to that found in other 17S-18S eucaryotic rRNA species. The nucleotide sequence of the 5'-terminal oligonucleotide is pAACCUGp, which is identical in length to that found in other eucaryotes and shows a partial but significant sequence homology to the 5' RNase TI oligonucleotides isolated from other eucaryotic species.  相似文献   

10.
11.
12.
13.
We have analyzed multiple recombinant DNA clones containing ribosomal RNA repeat units of the silkmoth, Bombyx mori. In combination with genomic DNA blots, analysis of these clones indicated that the rDNA repeat of B. mori is 10.8 kilobase pair in length and tandemly repeated in the genome, as reported by Manning et al. (18). However, contrary to that report, approximately 12% of the rDNA cistrons are interrupted by insertions of non-ribosomal DNA. Two classes of DNA insertions were identified. In one class the insertions are positioned in a region of the 28S coding sequence similar to that of the predominant rDNA insertions found in a variety of Dipteran and Tetrahymena species. In the second class, probable insertions are found close to the 3' terminus of the 28S coding sequence. Restriction enzyme analysis indicates that the two classes of insertions are not related.  相似文献   

14.
15.
Rapid analysis of microbial communities has proven to be a difficult task. This is due, in part, to both the tremendous diversity of the microbial world and the high complexity of many microbial communities. Several techniques for community analysis have emerged over the past decade, and most take advantage of the molecular phylogeny derived from 16S rRNA comparative sequence analysis. We describe a web-based research tool located at the Ribosomal Database Project web site (http://www.cme.msu.edu/RDP/html/analyses. html) that facilitates microbial community analysis using terminal restriction fragment length polymorphism of 16S ribosomal DNA. The analysis function (designated TAP T-RFLP) permits the user to perform in silico restriction digestions of the entire 16S sequence database and derive terminal restriction fragment sizes, measured in base pairs, from the 5' terminus of the user-specified primer to the 3' terminus of the restriction endonuclease target site. The output can be sorted and viewed either phylogenetically or by size. It is anticipated that the site will guide experimental design as well as provide insight into interpreting results of community analysis with terminal restriction fragment length polymorphisms.  相似文献   

16.
Polyhedrin gene of Bombyx mori nuclear polyhedrosis virus.   总被引:14,自引:7,他引:7       下载免费PDF全文
A portion of the genome of the nuclear polyhedrosis virus of Bombyx mori has been cloned. This part of the viral genome contains the gene encoding the viral occlusion body protein, polyhedrin. The polyhedrin gene has been sequenced in its entirety together with some of its 5' and 3' flanking sequences. The primary structure of polyhedrin predicted from the nucleotide sequence of the gene was found to be somewhat different from the one reported previously for the authentic protein (E. A. Kozlov, T. L. Levitina, N. M. Gusak, and S. B. Serebryani, Bioorg. Khim., 7:1008-1015, 1981; S. B. Serebryani, T. L. Levitina, M. L. Kautsman, Y. L. Radavski, N. M. Gusak, M. N. Ovander, N. V. Sucharenko, and E. A. Kozlov, J. Invertebr. Pathol., 30:442-443, 1977). Comparison of the primary structures of the polyhedrin of the nuclear polyhedrosis virus of B. mori with that of Autographa californica suggests that considerable selective pressure has been exercised at the protein level during evolution. Nucleotide sequence comparisons of the two structural genes reveal that the coding sequences have diverged significantly through the accumulation of silent and replacement substitutions. In contrast, a remarkable degree of sequence conservation was found to exist in the domains corresponding to the 5' and 3' noncoding regions of the polyhedrin mRNAs.  相似文献   

17.
Protein synthesis initiation on prokaryotic mRNAs involves base-pairing of a site preceding the initiation codon with the 3' terminal sequence of 16 S rRNA. It has been suggested that a similar situation may prevail in eukaryotic mRNAs. This suggestion is not based on experiments, but on observation of complementarities between mRNA 5' noncoding sequences and a conserved sequence near the 18 S rRNA 3' terminus. The hypothesis can be evaluated by comparing the number of potential binding sites found in the 5' noncoding sequences with the number of such sites expected to occur by chance. A method for computing this number is presented. The 5' noncoding sequences contain more binding sites than expected for a random RNA chain, but the same is true for 3' noncoding sequences. The effect can be traced to a clustering of purines and pyrimidines, common to noncoding sequences. In conclusion, a close inspection of the available mRNA sequences does not reveal any indication of a specific base-pairing ability between their 5' noncoding segments and the 18 S rRNA 3' terminus.  相似文献   

18.
19.
20.
Methylated and blocked 5' termini in vesicular stomatitis virus in vivo mRNAs.   总被引:15,自引:0,他引:15  
Methyl groups derived from 3H-methyl methionine were incorporated into vesicular stomatitis virus (VSV) MRNAs isolated from infected cells. Sequential degradation of the 12-18S viral mRNA species with ribonuclease T2, penicillium nuclease, and alkaline phosphatase yielded a single 3H-labeled dinucleotide. A similar resistant 32P-labeled fragment was obtained by digesting VSV mRNA uniformly labeled with 32P. This methylated and blocked oligomer was further cleaved with nucleotide pyrophosphatase, yielding two methylated 5' nucleotides. We postulate that the 5' terminal structure of the vivo 12-18S VSV mRNA contains 7-methylguanosine linked by a 5'-5' pyrophosphate bond to a methylated derivative of adenosine. In contrast to the mRNAs (+ strand), the VSV genome RNA ( MINUS STRAND) IS NOT BLOCKED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号