首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Early developmental events in microsporogenesis are known to play a role in pollen morphology: variation in cytokinesis type, cell wall formation, tetrad shape and aperture polarity are responsible for pollen aperture patterning. Despite the existence of other morphologies, monosulcate pollen is one of the most common aperture types in monocots, and is also considered as the ancestral condition in this group. It is known to occur from either a successive or a simultaneous cytokinesis. In the present study, the developmental sequence of microsporogenesis is investigated in several species of Asparagales that produce such monosulcate pollen, representing most families of this important monocot clade. METHODS: The developmental pathway of microsporogenesis was investigated using light transmission and epifluorescence microscopy for all species studied. Confocal microscopy was used to confirm centripetal cell plate formation. KEY RESULTS: Microsporogenesis is diverse in Asparagales, and most variation is generally found between families. It is confirmed that the whole higher Asparagales clade has a very conserved microsporogenesis, with a successive cytokinesis and centrifugal cell plate formation. Centripetal cell wall formation is described in Tecophilaeaceae and Iridaceae, a feature that had so far only been reported for eudicots. CONCLUSIONS: Monosulcate pollen can be obtained from several developmental pathways, leading thus to homoplasy in the monosulcate character state. Monosulcate pollen should not therefore be considered as the ancestral state unless it is produced through the ancestral developmental pathway. The question about the ancestral developmental pathway leading to monosulcy remains open.  相似文献   

2.
Although much attention has been paid to the role of stabilizing selection, empirical analyses testing the role of developmental constraints in evolutionary stasis remain rare, particularly for plants. This topic is studied here with a focus on the evolution of a pollen ontogenetic feature, the last points of callose deposition (LPCD) pattern, involved in the determination of an adaptive morphological pollen character (aperture pattern). The LPCD pattern exhibits a low level of evolution in eudicots, as compared to the evolution observed in monocots. Stasis in this pattern might be explained by developmental constraints expressed during male meiosis (microsporogenesis) or by selective pressures expressed through the adaptive role of the aperture pattern. Here, we demonstrate that the LPCD pattern is conserved in Euphorbiaceae s.s. and that this conservatism is primarily due to selective pressures. A phylogenetic association was found between the putative removal of selective pressures on pollen morphology after the origin of inaperturate pollen, and the appearance of variation in microsporogenesis and in the resulting LPCD pattern, suggesting that stasis was due to these selective pressures. However, even in a neutral context, variation in microsporogenesis was biased. This should therefore favour the appearance of some developmental and morphological phenotypes rather than others.  相似文献   

3.
The formation of cytomictic channels (CCs) during the tobacco microsporogenesis has been analyzed by microscopy and cytochemical methods. Starting from the pachytene stage, CCs were formed between microsporocytes with involvement of specific organelles, the so-called spherosome-like vesicles. The presence of the enzyme callase, able to degrade callose and form CCs in the cell wall of microsporocytes, has been demonstrated for the first time in the spherosome-like vesicles. An active form of callase was detectable in the spherosome-like vesicles and cell wall but not in the endoplasmic reticulum and Golgi apparatus. The release of callase from spherosome-like vesicles into the cell wall was described. Two ways in formation of the CCs in the tobacco microsporogenesis, the primary formation in the cell wall composed of pectins and cellulose (leptotene-zygotene) and secondary formation in the cell wall of callose (after the pachytene stage), were compared.  相似文献   

4.
This paper presents the first broad overview of three main features of microsporogenesis (male meiosis) in angiosperms: cytokinesis (cell division), intersporal wall formation, and tetrad form. A phylogenetic comparative approach was used to test for correlated evolution among these characters and to make hypotheses about evolutionary trends in microsporogenesis. The link between features of microsporogenesis and pollen aperture type was examined. We show that the pathway associated with successive cytokinesis (cytoplasm is partitioned after each meiotic division) is restricted to wall formation mediated by centrifugally developing cell plates, and tetragonal (or decussate, T-shaped, linear) tetrads. Conversely, much more flexibility is observed when cytokinesis is simultaneous (two meiotic divisions completed before cytoplasmic partitioning). We suggest that the ancestral type of microsporogenesis for angiosperms, and perhaps for all seed plants, associated simultaneous cytokinesis with centripetal wall formation, resulting in a large diversity in tetrad forms, ranging from regular tetrahedral to tetragonal tetrads, including rhomboidal tetrads. From this ancestral pathway, switches toward successive cytokinesis occurred among basal angiosperms and monocots, generally associated with a switch toward centrifugal intersporal wall formation, whereas eudicots evolved toward an almost exclusive production of regular tetrahedral tetrads. No straightforward link is found between the type of microsporogenesis and pollen aperture type.  相似文献   

5.
Various characteristics of complex gene regulatory networks (GRNs) have been discovered during the last decade, e.g., redundancy, exponential indegree distributions, scale-free outdegree distributions, mutational robustness, and evolvability. Although progress has been made in this field, it is not well understood whether these characteristics are the direct products of selection or those of other evolutionary forces such as mutational biases and biophysical constraints. To elucidate the causal factors that promoted the evolution of complex GRNs, we examined the effect of fluctuating environmental selection and some intrinsic constraining factors on GRN evolution by using an individual-based model. We found that the evolution of complex GRNs is remarkably promoted by fixation of beneficial gene duplications under unpredictably fluctuating environmental conditions and that some internal factors inherent in organisms, such as mutational bias, gene expression costs, and constraints on expression dynamics, are also important for the evolution of GRNs. The results indicate that various biological properties observed in GRNs could evolve as a result of not only adaptation to unpredictable environmental changes but also non-adaptive processes owing to the properties of the organisms themselves. Our study emphasizes that evolutionary models considering such intrinsic constraining factors should be used as null models to analyze the effect of selection on GRN evolution.  相似文献   

6.
7.
This article describes the complete microsporogenesis and pollen formation in cassava (Manihot esculenta Crantz) at the various developmental stages (pollen mother cell, meiosis, tetrads, early free spore, mid uninucleate, late uninucleate, binucleate and mature pollen grain). Light microscopy, transmission electron microscopy and confocal laser scanning microscopy were used for the study. Floral bud size and other inflorescence characteristics were correlated with specific stages of the microspore development. This association allows a rapid selection of floral buds with similar microspore developmental stages, useful when a large number of homogeneous cells are needed for analysis and for in vitro induction of androgenesis. This article also compares methods for digestion the exine wall in microspores.  相似文献   

8.
The eudicot clade of angiosperms is characterised by simultaneous microsporogenesis and tricolpate pollen apertures. Successive microsporogenesis, where a distinct dyad stage occurs after the first meiotic division, is relatively rare in eudicots although it occurs in many early branching angiosperms including monocots. An extensive literature survey shows that successive microsporogenesis has arisen independently at least six times in eudicots, in five different orders, including Berberidaceae (Ranunculales). Microsporogenesis and pollen apertures were examined here using light and transmission electron microscopy in eleven species representing six genera of Berberidaceae. Successive microsporogenesis is a synapomorphy for the sister taxa Berberis and Mahonia (and possibly also Ranzania), the remaining genera are simultaneous. Callose wall formation in Berberis and Mahonia is achieved by centripetal furrowing, though centrifugal cell plates are more usual for this microsporogenesis type. This discrepancy could reflect the fact that the successive type in Berberidaceae is derived from the simultaneous type, and centripetal furrowing has been retained. Eudicots with successive microsporogenesis usually produce tetragonal or decussate tetrads, though occasional tetrahedral or irregular tetrads in Berberis and Mahonia indicate that the switch from simultaneous to successive division is incomplete or “leaky”. In contrast, linear tetrads produced by successive microsporogenesis in Asclepiadoideae (Apocynaceae s.l.) are the result of a highly specialised developmental pathway leading to the production of pollinia. Pollen in successive eudicots is dispersed as monads, dyads, tetrads, and as single grains in pollinia. Apertures are diverse, and patterns include spiraperturate, clypeate, irregular, monocolpate, diporate and inaperturate. It is possible that successive microsporogenesis, although rare, potentially occurs in other eudicots, for example, in species where pollen is inaperturate.  相似文献   

9.
Abstract: During the past decade, compositional analysis (CA) has been used widely in animal—habitat and resource selection studies. Despite this popularity, CA has not been tested for potential systematic biases such as incorrect identification of preferred resources. We used computer-simulated data based on known habitat use and availability parameters to assess the potential for CA to incorrectly identify preferred habitat use. We consider in particular the situation when available habitat categories not used by all animals are included in the resource selection analysis, with substitution of a relatively small value, such as 0.01, for each 0% utilization value. Progressively larger misclassification-error*** rates in preferred habitat use resulted from substituting progressively smaller positive values for each 0% utilization of a habitat category.  相似文献   

10.
Trends, stasis, and drift in the evolution of nematode vulva development   总被引:6,自引:0,他引:6  
BACKGROUND: A surprising amount of developmental variation has been observed for otherwise highly conserved features, a phenomenon known as developmental system drift. Either stochastic processes (e.g., drift and absence of selection-independent constraints) or deterministic processes (e.g., selection or constraints) could be the predominate mechanism for the evolution of such variation. We tested whether evolutionary patterns of change were unbiased or biased, as predicted by the stochastic or deterministic hypotheses, respectively. As a model, we used the nematode vulva, a highly conserved, essential organ, the development of which has been intensively studied in the model systems Caenorhabditis elegans and Pristionchus pacificus. RESULTS: For 51 rhabditid species, we analyzed more than 40 characteristics of vulva development, including cell fates, fate induction, cell competence, division patterns, morphogenesis, and related aspects of gonad development. We then defined individual characters and plotted their evolution on a phylogeny inferred for 65 species from three nuclear gene sequences. This taxon-dense phylogeny provides for the first time a highly resolved picture of rhabditid evolution and allows the reconstruction of the number and directionality of changes in the vulva development characters. We found an astonishing amount of variation and an even larger number of evolutionary changes, suggesting a high degree of homoplasy (convergences and reversals). Surprisingly, only two characters showed unbiased evolution. Evolution of all other characters was biased. CONCLUSIONS: We propose that developmental evolution is primarily governed by selection and/or selection-independent constraints, not stochastic processes such as drift in unconstrained phenotypic space.  相似文献   

11.
A comparative study of microsporogenesis in fertile and in male sterile (ms1) soybean plants (Glycine max (L.) Merr.) was conducted by using various microscopic techniques. Once the developmental pattern for fertile microsporogenesis was established, it was compared with the developmental pattern in sterile plants to determine the time of microsporogenesis breakdown. Sterility of the ms1 mutant is caused by failure of cytokinesis after telophase II. The four nuclei resulting from meiosis become enclosed in a single-celled structure, termed a coenocytic microspore. These microspores develop a pollen-like wall and become engorged with lipid and starch reserves. Coenocytic microspores usually degenerate after engorgement. This study of fertile and sterile (ms1) microsporogenesis has shown that nuclear and cytoplasmic events must occur at precise times for the successful development of 1n pollen grains from 2n sporogenous cells. Any disruption during this process leads to sterility.  相似文献   

12.
Convergent evolution is widely viewed as strong evidence for the influence of natural selection on the origin of phenotypic design. However, the emerging evo‐devo synthesis has highlighted other processes that may bias and direct phenotypic evolution in the presence of environmental and genetic variation. Developmental biases on the production of phenotypic variation may channel the evolution of convergent forms by limiting the range of phenotypes produced during ontogeny. Here, we study the evolution and convergence of brachycephalic and dolichocephalic skull shapes among 133 species of Neotropical electric fishes (Gymnotiformes: Teleostei) and identify potential developmental biases on phenotypic evolution. We plot the ontogenetic trajectories of neurocranial phenotypes in 17 species and document developmental modularity between the face and braincase regions of the skull. We recover a significant relationship between developmental covariation and relative skull length and a significant relationship between developmental covariation and ontogenetic disparity. We demonstrate that modularity and integration bias the production of phenotypes along the brachycephalic and dolichocephalic skull axis and contribute to multiple, independent evolutionary transformations to highly brachycephalic and dolichocephalic skull morphologies.  相似文献   

13.
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent nonlinear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can “store” and “recall” multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and “generalize” (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviors follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well‐understood in the context of neural networks. This helps to explain how development facilitates the evolution of high‐fitness phenotypes and how this ability changes over evolutionary time.  相似文献   

14.
Summary. We present the results of ultrastructural and immunocytochemical studies of sugar beet microsporocytes during the developmental phase that begins with the first meiotic metaphase and ends with the formation of young tetrads. The most prominent feature noted during this period of microsporogenesis was the presence of numerous cisternae of endoplasmic reticulum which frequently lie perpendicular to the surface of the plasma membrane and eventually fuse to it. Microscopic observations have been combined with the detection of several carbohydrate epitopes representing pectins and arabinogalactan proteins in the primexine and incipient exine. Pectin domains that possess both low and highly methylesterified epitopes, as well as pectin side chains enriched in (1→4)-β-D-galactose residues, are deposited in this young microspore wall. The epitopes of arabinogalactan protein that bind to JIM13, JIM8, and LM2 antibodies are localised within the callose wall surrounding posttelophase tetrads. The possibility of endoplasmic-reticulum involvement in the synthesis, transport, or metabolism of several microspore wall compounds is discussed. Correspondence and reprints: Institute of Plant Breeding and Acclimatization, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Poland.  相似文献   

15.
The evolution of life on earth has been characterized by generalized long-term increases in phenotypic complexity. Although natural selection is a plausible cause for these trends, one alternative hypothesis--generative bias--has been proposed repeatedly based on theoretical considerations. Here, we introduce a computational model of a developmental system and use it to test the hypothesis that long-term increasing trends in phenotypic complexity are caused by a generative bias towards greater complexity. We use our model to generate random organisms with different levels of phenotypic complexity and analyse the distributions of mutational effects on complexity. We show that highly complex organisms are easy to generate but there are trade-offs between different measures of complexity. We also find that only the simplest possible phenotypes show a generative bias towards higher complexity, whereas phenotypes with high complexity display a generative bias towards lower complexity. These results suggest that generative biases alone are not sufficient to explain long-term evolutionary increases in phenotypic complexity. Rather, our finding of a generative bias towards average complexity argues for a critical role of selective biases in driving increases in phenotypic complexity and in maintaining high complexity once it has evolved.  相似文献   

16.
Potential constraints on the evolution of phenotypic plasticity were tested using data from a previous study on predator-induced morphology and life history in the freshwater snail Physa heterostropha. The benefit of plasticity can be reduced if facultative development is associated with energetic costs, developmental instability, or an impaired developmental range. I examined plasticity in two traits for 29 families of P. heterostropha to see if it was associated with growth rate or fecundity, within-family phenotypic variance, or the potential to produce extreme phenotypes. Support was found for only one of the potential constraints. There was a strong negative selection gradient for growth rate associated with plasticity in shell shape (β = ?0.3, P < 0.0001). This result was attributed to a genetic correlation between morphological plasticity and an antipredator behavior that restricts feeding. Thus, reduced growth associated with morphological plasticity may have had unmeasured fitness benefits. The growth reduction, therefore, is equivocal as a cost of plasticity. Using different fitness components (e.g., survival, fecundity, growth) to seek constraints on plasticity will yield different results in selection gradient analyses. Procedural and conceptual issues related to tests for costs and limits of plasticity are discussed, such as whether constraints on plasticity will be evolutionarily ephemeral and difficult to detect in nature.  相似文献   

17.
Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence.  相似文献   

18.
Formation of the unique and highly diverse outer cell wall, or exine, of pollen is essential for normal pollen function and survival. However, little is known about the many contributing proteins and processes involved in the formation of this wall. The tomato gene LeGRP92 encodes for a glycine-rich protein produced specifically in the tapetum. LeGRP92 is found as four major forms that accumulate differentially in protein extracts from stamens at different developmental stages. The three largest molecular weight forms accumulated during early microspore development, while the smallest molecular weight form of LeGRP92 was present in protein extracts from stamens from early microsporogenesis through anther dehiscence, and was the only form present in dehisced pollen. Light microscopy immunolocalization experiments detected LeGRP92 at only two stages, late tetrad and early free microspore. However, we observed accumulation of the LeGRP92 at the early tetrad stage of development by removing the callose wall from tetrads, which allowed LeGRP92 detection. Transmission electron microscopy confirmed the LeGRP92 accumulation from microspore mother cells, tetrads through anther dehiscence. It was observed in the callose surrounding the microspore mother cells and tetrads, the exine of microspores and mature pollen, and orbicules. Plants expressing antisense RNA had reduced levels of LeGRP92 mRNA and protein, which correlated to pollen with altered exine formation and reduced pollen viability and germination. These data suggest that the LeGRP92 has a role in facilitating sporopollenin deposition and uniform exine formation and pollen viability.  相似文献   

19.
Use and misuse of correspondence analysis in codon usage studies   总被引:15,自引:6,他引:9       下载免费PDF全文
Correspondence analysis has frequently been used for codon usage studies but this method is often misused. Because amino acid composition exerts constraints on codon usage, it is common to use tables containing relative codon frequencies (or ratios of frequencies) instead of simple codon counts to get rid of these amino acid biases. The problem is that some important properties of correspondence analysis, such as rows weighting, are lost in the process. Moreover, the use of relative measures sometimes introduces other biases and often diminishes the quantity of information to analyse, occasionally resulting in interpretation errors. For instance, in the case of an organism such as Borrelia burgdorferi, the use of relative measures led to the conclusion that there was no translational selection, while analyses based on codon counts show that there is a possibility of a selective effect at that level. In this paper, we expose these problems and we propose alternative strategies to correspondence analysis for studying codon usage biases when amino acid composition effects must be removed.  相似文献   

20.
Kingsolver et al.'s review of phenotypic selection gradients from natural populations provided a glimpse of the form and strength of selection in nature and how selection on different organisms and traits varies. Because this review's underlying database could be a key tool for answering fundamental questions concerning natural selection, it has spawned discussion of potential biases inherent in the review process. Here, we explicitly test for two commonly discussed sources of bias: sampling error and publication bias. We model the relationship between variance among selection gradients and sample size that sampling error produces by subsampling large empirical data sets containing measurements of traits and fitness. We find that this relationship was not mimicked by the review data set and therefore conclude that sampling error does not bias estimations of the average strength of selection. Using graphical tests, we find evidence for bias against publishing weak estimates of selection only among very small studies (N<38). However, this evidence is counteracted by excess weak estimates in larger studies. Thus, estimates of average strength of selection from the review are less biased than is often assumed. Devising and conducting straightforward tests for different biases allows concern to be focused on the most troublesome factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号