首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为揭示丛枝菌根真菌(AMF)和根瘤菌在白三叶氮(N)同化中的作用,该研究对白三叶进行单一或联合接种隐类球囊霉(Paraglomus occultum)和三叶草根瘤菌(Rhizobium trifolii),分析其对白三叶的生长、光合作用、叶片N和氨基酸含量以及N同化相关酶活性的影响。结果表明:(1)单一接种AMF或根瘤菌以及联合接种AMF和根瘤菌均显著增加了白三叶的株高、匍匐茎长度、叶片数、地上部生物量、总生物量、叶绿素b和总叶绿素含量、稳态光量子效率和叶片N含量,这种增强效应是联合接种>单一AMF>单一根瘤菌>未接种处理。(2)联合接种AMF和根瘤菌显著增加了白三叶叶片中丙氨酸、精氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸和组氨酸的含量,显著提升了叶片N同化相关酶如硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶、天冬酰胺合成酶和天冬氨酸转氨酶的活性,显著促进AMF对白三叶根系的侵染。综上认为,联合接种AMF和根瘤菌通过激活N同化相关酶活性有效促进N同化,产生更多氨基酸,进一步促进白三叶植株生长; 联合接种AMF和根瘤菌具有协同作用,有效促进了白三叶的N同化。  相似文献   

2.
Kura clover (Trifolium ambiguum M.B.) is a persistent rhizomatous forage legume, whose use in the U.S.A. is limited by establishment difficulties in part attributable to nodulation problems. In this study, soil was collected from established stands of Kura clover growing in 9 diverse North American environments. Rhizobia were plant-trapped using Kura clover cv. Endura as host, then rhizobia from nodules fingerprinted using BOX-PCR. The diversity of isolates from North America was then contrasted to that of rhizobia from a single Caucasian environment (Russia), the center of origin for this species. Populations were characterized using clustering methods, and genetic diversity estimated using the Shannon-Weaver diversity index. The genetic diversity of the North American populations was extremely limited, all isolates being closely related to two of the strains found in a locally available commercial inoculant. In contrast, Russian isolates formed a distinct cluster with significant internal genetic diversity. Genetic diversity indices for the North American and Russian populations were 3.5 and 10.76, respectively. The implication of this and other studies is that Kura clover is highly specific in Rhizobium requirement. If the performance of this legume in the U.S.A. is to be improved, either by modifying current establishment practices or plant breeding, it is essential that these studies be paralleled by more collections and evaluation of rhizobia from its center of origin, given the extremely limited diversity of rhizobia found in North America.  相似文献   

3.
Plant genotypes of Trifolium subterraneum L. (subterranean clover) were evaluated for differences in symbiotic N2 fixation with soil rhizobia, with the long-term aim of using plant selection to overcome sub-optimal N2 fixation associated with poorly effective soil rhizobia. Symbiotic performance (SP) was assessed for 49 genotypes of subterranean clover with each of four pure Rhizobium strains isolated from soil. Plants were grown in N free media in the greenhouse and their shoot dry weights measured and expressed as a percentage of dry weight with R. leguminosarm bv. trifolii WSM1325, the recommended commercial inoculant. Average SP with two Rhizobium strains (H and J) ranged from completely ineffective to 80% of potential for the subterranean clover genotypes. Two clover cultivars with high (cv. Campeda) and low (cv. Clare) SP values were investigated in more detail. Campeda typically fixed more N2 than Clare when inoculated with 30 soil extracts (4.2 vs 2.4 mg N2 fixed/shoot) and with 14 pure strains isolated from those soils (4.2 vs 2.2 mg N2 fixed/shoot). The poor performance of Clare could be attributed to interruptions at multiple stages of the symbiotic association, from nodule initiation (less nodules), nodule development (small, white nodules), through to reduced nodule function (N2 fixed/mg nodule) depending on the inoculation treatment. Through the careful use of subterranean clover genotypes by plant breeders it should be possible to make significant gains in the SP of future subterranean clover cultivars.  相似文献   

4.
Root cells of four common legumes were found to remain susceptible to nodulation by rhizobia for only a short period of time. Delayed inoculation experiments conducted with these legume hosts indicated that the initially susceptible region of the root became progressively less susceptible if inoculations were delayed by a few hours. Profiles of the frequency of nodule formation relative to marks indicating the regions of root and root hair development at the time of inoculation indicated that nodulation of Vigna sinensis (L.) Endl. cv California Black Eye and Medicago sativa L. cvs Moapa and Vernal roots was inhibited just below the region that was most susceptible at the time of inoculation. This result suggests the existence of a fast-acting regulatory mechanism in these hosts that prevents overnodulation. Nodulation in white clover may occur in two distinct phases. In addition to the transient susceptibility of preemergent and developing root hair cells, there appeared to be an induced susceptibility of mature clover root hair cells. A cell-free bacterial exudate preparation from Rhizobium trifolii cells was found to render mature root hair cells of white clover more rapidly susceptible to nodulation.  相似文献   

5.
6.
G. D. Bowen 《Plant and Soil》1961,15(2):155-165
Summary Seed coat diffusates from the legumesCentrosema pubescens and subterranean clover were found to contain a water-soluble, thermostable, antibiotic inhibiting a wide range of rhizobia and other gram-negative organisms as well as gram-positive organisms. Lucerne seed diffusate showed little activity. The extent of inhibition varied with the micro-organism. Diffusate from subterranean clover was generally more active than fromC. pubescens.It was shown that seed diffusates can have a depressive or a stimulative effect on multiplication of organisms around seeds germinating in sand and soil.The significance of the results, particularly with respect to inoculation with Rhizobium is discussed.  相似文献   

7.
Seed of arrowleaf clover (Trifolium vesiculosum Savi) were inoculated with a streptomycin resistant mutant ofRhizobium leguminosarum biovartrifolii and planted on the surface of a Norwood fine sandy loam and at 10 and 25 mm depths. Populations of rhizobia declined from an excess of 10,000 seed−1 immediately after inoculation to less than 100 within three to four days after sowing on the soil surface when water was the peat inoculant adhesive. Gum arabic as the adhesive promoted the survival of rhizobia. Populations of rhizobia on surface sown seed declined much more rapidly than on seed buried in soil. Although, the soil was nearly air dry, rhizobia on buried seed survived at populations exceeding 1,000 seed−1. The maximum soil temperatures ranged between 21 and 36°C over the sampling time and did not seem to have a major influence on short term survival of rhizobia. Delayed germination of seed due to the higher temperature would indirectly influence the number of viable rhizobia present at germination.  相似文献   

8.
农肥和化肥施用对大豆根瘤菌多样性的影响   总被引:1,自引:0,他引:1  
刘朴方  王宏燕 《生态学杂志》2012,31(6):1468-1472
基于6年的黑土培肥定位试验,从大豆根瘤中提取根瘤菌DNA,采用PCR-DGGE与克隆测序技术相结合的方法,分析了施用农肥和化肥对根瘤菌多样性的影响。DGGE图谱分析表明:对照(不施肥)处理的nifH基因条带数和多样性指数最大,各处理多样性指数差异显著,大小顺序为:对照>农肥高量>农肥低量=农化1:1>化肥高量>化肥低量。聚类分析显示,施用化肥的处理与其他处理相似性仅为66%,说明施用化肥的处理与其他处理相比大豆根瘤菌群落结构差异较大,显著改变了根瘤菌的群落结构。DGGE测序结果显示,大部分根瘤菌属于慢生根瘤菌属。农肥和化肥的施用均降低了大豆根瘤菌多样性,其中化肥处理更明显地降低了根瘤菌多样性。  相似文献   

9.
An early nodulin cDNA, dd23b, was isolated from white clover root tissue by differential display RT-PCR. Its full-length sequence of 340 nucleotides encodes a predicted 72-amino-acid protein of molecular mass 8.3 kDa, with a polypeptide region containing cysteine pairs spaced in the manner of a cysteine cluster protein. This feature, which is shared by some other late and early nodulins from pea and broad bean, suggests a role in metal ion binding and membrane transport. Temporal and spatial expression patterns were determined during infection and nodulation by the homologous microsymbiont. No expression was found in unchallenged root tissue over a 7-day sampling period. Expression was first detectable in roots by RT-PCR 6 h post-inoculation with Rhizobium leguminosarum biovar trifolii, placing dd23b among the earliest nodulins to be detected to date. In root nodules, expression occurred primarily in the central symbiotic zone, but also in some host cells within the infection zone. Addition of purified wild-type chitolipooligosaccharide Nod factor to axenic white clover roots induced dd23b expression, providing further evidence for the role of this gene in the early plant response to infection by rhizobia. Electronic Publication  相似文献   

10.
11.
AIMS: To analyse the symbiotic variations within indigenous populations of rhizobia nodulating red clover (Trifolium pratense L.) in soils of northern Norway and Sweden at different times of the growing season. METHODS AND RESULTS: A total of 431 nodule isolates sampled under field conditions in summer and autumn, were characterized genetically by targeting both chromosomal and symbiotic genes. The Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction (PCR) fingerprinting of chromosomal DNA revealed considerable variation within the isolated populations that was more influenced by geographical origin than sampling time. Analysis of PCR amplified nodEF gene on the symbiotic plasmid by restriction fragment length polymorphism revealed a high proportion of nod types common to the two studied sites. The symbiotic efficiency of the isolates, representing both dominating and rare nodEF genotypes, showed high N(2) fixation rates in symbiosis with the host plant in a greenhouse experiment using the (15)N isotope dilution method. CONCLUSIONS: Effective N(2)-fixing strains of Rhizobium leguminosarum bv. trifolii nodulating red clover are common and genetically diverse in these northern Scandinavia soils. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the variability, stability and dynamics of resident populations of rhizobia nodulating red clover in Scandinavian soils which has practical implications for applying biological nitrogen fixation in subarctic plant production.  相似文献   

12.
Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes   总被引:19,自引:9,他引:10       下载免费PDF全文
The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may act as an acetyl CoA precursor, was utilized as the principle carbon source. Malate synthetase was active in extracts of rhizobia from nodules of bush bean (Phaseolus vulgaris L.), cowpea (Vigna sinensis L.), lupine (Lupinus angustifolius L.) and soybean (Glycine max L. Merr.). Activity of malate synthetase was, however, barely detectable in rhizobia from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and pea (Pisum sativum L.) nodules. Appreciable isocitrate lyase activity was not detected in rhizobia from nodules nor was it induced by depletion of endogenous substrates by incubation of excised bush bean nodules. Although rhizobia has the potential for the formation of the key enzymes of the glyoxylate cycle, the absence of isocitrate lyase activity in bacteria isolated from nodules indicated that the glyoxylate cycle does not operate in the symbiotic growth of rhizobia and that the observed high content of fatty acids in nodules and nodule bacteria probably is related to a structural role.  相似文献   

13.
Rhizobia play a key role for performance of leguminous plants and ecosystem productivity. However, no studies to date have investigated the importance of the rhizobial symbiosis for legume–herbivore interactions. The additional nitrogen provided by the rhizobia improves the nutritional quality of plants, but may also be used for the synthesis of defence compounds. We performed greenhouse experiments with nodulating and non-nodulating, as well as cyanogenic and acyanogenic strains of Trifolium repen s to study the effects of rhizobia Rhizobium leguminosarum on plant growth and the performance of the chewing herbivore Spodoptera littoralis and the phloem-sucking aphid Myzus persicae . We demonstrate that for nodulating strains of T. repens rhizobia increased plant growth and the performance of Spodoptera littoralis . However, this positive effect of rhizobia on the caterpillars did not occur in a cyanogenic clover strain. Reproduction of the phloem-sucking aphid Myzus persicae was inconsistently affected by rhizobia. Our study provides evidence that the additional nitrogen provided by the rhizobia may be used for the production of nitrogen-based defence compounds, thereby counteracting positive effects on the performance of chewing herbivores. The symbiosis with rhizobia is therefore an important driver of legume–herbivore interactions.  相似文献   

14.
The symbiotic nitrogen fixing legumes play an essential role in sustainable agriculture. White clover (Trifolium repens L.) is one of the most valuable perennial legumes in pastures and meadows of temperate regions. Despite its great agriculture and economic importance, there is no detailed available information on phylogenetic assignation and characterization of rhizobia associated with native white clover plants in South-Eastern Europe. In the present work, the diversity of indigenous white clover rhizobia originating in 11 different natural ecosystems in North-Eastern Romania were assessed by a polyphasic approach. Initial grouping showed that, 73 rhizobial isolates, representing seven distinct phenons were distributed into 12 genotypes, indicating a wide phenotypic and genotypic diversity among the isolates. To clarify their phylogeny, 44 representative strains were used in sequence analysis of 16S rRNA gene and IGS fragments, three housekeeping genes (atpD, glnII and recA) and two symbiosis-related genes (nodA and nifH). Multilocus sequence analysis (MLSA) phylogeny based on concatenated housekeeping genes delineated the clover isolates into five putative genospecies. Despite their diverse chromosomal backgrounds, test strains shared highly similar symbiotic genes closely related to Rhizobium leguminosarum biovar trifolii. Phylogenies inferred from housekeeping genes were incongruent with those of symbiotic genes, probably due to occurrence of lateral transfer events among native strains. This is the first polyphasic taxonomic study to report on the MLSA-based phylogenetic diversity of indigenous rhizobia nodulating white clover plants grown in various soil types in South-Eastern Europe. Our results provide valuable taxonomic data on native clover rhizobia and may increase the pool of genetic material to be used as biofertilizers.  相似文献   

15.
Kavimandan  S. K. 《Plant and Soil》1986,96(1):133-135
Summary Inoculation with root-nodule bacteria had favourable influence on N-uptake and yield of wheat. Since waterlogged root region of rice permits higher nitrogenase activity a pot culture experiment was conducted using same nine strains of rhizobia,Azotobacter chroococcum and bluegreen algae as inoculants.R. leguminosarum in combination with 50 kg N ha−1;R. japonicum and a strain of rhizobium isolated from moong bean increased the yield of paddy cv. Pusa-33. On the other hand an adverse effect of bacterial inoculation and of applied N was observed in case of Azotobacter, and rhizobia isolated from green gram, cicer, soyabean and clover. The importance of plant type, growth conditions and application of inorganic N in determining the success of plant-rhizobial associations is emphasised.  相似文献   

16.
Division of cortical cells in roots of leguminous plants is triggered by lipochitin oligosaccharides (LCOs) secreted by the rhizobial microsymbiont. Previously, we have shown that presence of pea lectin in transgenic white clover hairy roots renders these roots susceptible to induction of root nodule formation by pea-specific rhizobia (C. L. Díaz, L. S. Melchers, P. J. J. Hooykaas, B. J. J. Lugtenberg, and J. W. Kijne, Nature 338:579-581, 1989). Here, we report that pea lectin-transformed red clover hairy roots form nodule primordium-like structures after inoculation with pea-, alfalfa-, and Lotus-specific rhizobia, which normally do not nodulate red clover. External application of a broad range of purified LCOs showed all of them to be active in induction of cortical cell divisions and cell expansion in a radial direction, resulting in formation of structures that resemble nodule primordia induced by clover-specific rhizobia. This activity was obvious in about 50% of the red clover plants carrying hairy roots transformed with the pea lectin gene. Also, chitopentaose, chitotetraose, chitotriose, and chitobiose were able to induce cortical cell divisions and cell expansion in a radial direction in transgenic roots, but not in control roots. Sugar-binding activity of pea lectin was essential for its effect. These results show that transformation of red clover roots with pea lectin results in a broadened response of legume root cortical cells to externally applied potentially mitogenic oligochitin signals.  相似文献   

17.
Summary Effects of increasing rates of lime (0, 900, 1725, and 3000 kg Ca(OH)2/ha producing soil pH of 4.0, 4.7, 5.1 and 5.6) and P (50, 150, 250 and 350 kg P/ha) on top and root yield, root morphology and chemical composition of lotus (Lotus pedunculatus Cav.) and white clover (Trifolium repens L.), were studied, using an acid soil in a greenhouse experiment. Increasing rates of applied lime and phosphate resulted in substantial increases in top yields of both species but concomitant increases in root yield were small. In the unlimed soil, lotus out-yielded (tops and roots) white clover at all P levels. However, in the three limed treatments, white clover clearly out-yielded lotus. Yield response curves to applied P levelled off at the two highest lime rates for lotus but not for white clover. Nodulation and N content of white clover increased significantly with increasing lime applications, but for lotus there was a significant decrease in nodulation at the highest lime rate. Increased P rates had a small stimulatory effect on nodulation in both species. Of the total root weight, the percentage contribution of the tap and primary lateral root fractions was smaller and that of the secondary plus tertiary lateral roots was greater for lotus than for white clover although root length per unit weight tended to be larger for white clover at the two highest lime rates. Furthermore, lotus possessed longer and more numerous root hairs than white clover. Lime applications significantly decreased the percentage contribution of the tap and primary lateral roots to the total root weight and increased the percentage contribution of the secondary plus tertiary lateral roots. Al and Mn contents of tops and roots of both species decreased with increasing lime rates. There was a highly significant negative correlation between relative yield and Al content of lotus and white clover tops. In comparison with the limed treatments, in the unlimed treatments a greater percentage of total P, Al, Mn and N content accumulated in the roots of both species. In addition, lotus accumulated a much greater percentage Al in its roots than white clover.  相似文献   

18.
Common beans (Phaseolus vulgaris L.) have centers of origin in both Mesoamerica and Andean South America, and have been domesticated in each region for perhaps 5000 years. A third major gene pool may exist in Ecuador and Northern Peru. The diversity of the rhizobia associated with beans has also been studied, but to date with an emphasis on the Mesoamerican center of origin. In this study we compared bean rhizobia from Mexico and Andean South America using both phenotypic and phylogenetic approaches. When differences between the rhizobia of these two regions were shown, we then examined the influence of bean cultivar on the most probable number (MPN) count and biodiversity of rhizobia recovered from different soils. Three clusters of bean rhizobia were distinguished using phenotypic analysis and principal-component analysis of Box AIR-PCR banding patterns. They corresponded principally to isolates from Mexico, and the northern and southern Andean regions, with isolates from southern Ecuador exhibiting significant genetic diversity. Rhizobia from Dalea spp., which are infective and effective on beans, may have contributed to the apparent diversity of rhizobia recovered from the Mesoamerican region, while the rhizobia of wild Phaseolus aborigineus from Argentina showed only limited similarity to the other bean rhizobia tested. Use of P. vulgaris cultivars from the Mesoamerican and Andean Phaseolus gene pools as trap hosts did not significantly affect MPN counts of bean rhizobia from the soils of each region, but did influence the diversity of the rhizobia recovered. Such differences in compatibility of host and Rhizobium could be a factor in the poor reputation for nodulation and N2 fixation in this crop.  相似文献   

19.
Summary S. 184 white clover was surface seeded into natural molinia pasture on wet stagnogley soil containing no indigenousRhizobium trifolii. Seedlings were ‘spray inoculated’ after emergence with each of three strains ofR. trifolii. The best of these treatments produced an eight fold improvement in dry matter in the seeding year, followed by a 28% improvement in the following year. The results confirm the potential benefits which may be achieved by inoculating clover with suitable strains of rhizobia. The data are compared with a previously reported trial on an adjacent site where benefits were much greater in the first year. The difference is attributed to the overall advantages conferred in the present trial by much higher seedling populations and less severe competition from native species in the establishment phase.  相似文献   

20.
Autoradiography was used to provide evidence for the transfer of Rhizobium produced moieties to the host nuclei of young clover nodule cells. Cells of Rhizobium trifolii Dangeard were labeled with 3H-adenine or 4,5-3H-l -leucine and 3,4-3H-l .-proline, washed free of external label, and allowed to nodulate young seedlings of white clover (Trifolium repens L. cv. White Dutch). Sections (0.5–1.0 μm) of young nodules up to four days old were autoradiographed using the dipping technique. Grain counts indicated movement of tritium from the leucine-proline labeled rhizobia to the polyploid nuclei of two day old clover nodule cells. Acetylene reduction was not detected until approximately 24 hours after the transfer of tritium was observed. No transfer of tritium was observed with 3H-adenine labeled rhizobia. It is hypothesized that nodulating rhizobia may induce clover nodule cells to initiate leghemoglobin synthesis by the transfer of a bacterially produced inducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号