首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis induction through CD95 (APO-1/Fas) critically depends on generation of active caspase-8 at the death-inducing signaling complex (DISC). Depending on the cell type, active caspase-8 either directly activates caspase-3 (type I cells) or relies on mitochondrial signal amplification (type II cells). In MCF7-Fas cells that are deficient for pro-caspase-3, even high amounts of caspase-8 produced at the DISC cannot directly activate downstream effector caspases without mitochondrial help. Overexpression of Bcl-x(L) in these cells renders them resistant to CD95-mediated apoptosis. However, activation of caspase-8 in control (vector) and Bcl-x(L) transfectants of MCF7-Fas cells proceeds with similar kinetics, resulting in a complete processing of cellular caspase-8. Most of the cytosolic caspase-8 substrates are not cleaved in the Bcl-x(L) protected cells, raising the question of how Bcl-x(L)-expressing MCF7-Fas cells survive large amounts of potentially cytotoxic caspase-8. We now demonstrate that active caspase-8 is initially generated at the DISC of both MCF7-Fas-Vec and MCF7-Fas-Bcl-x(L) cells and that the early steps of CD95 signaling such as caspase-8-dependent cleavage of DISC bound c-FLIP(L), caspase-8-dependent clustering, and internalization of CD95, as well as processing of pro-caspase-8 bound to mitochondria are very similar in both transfectants. However, events downstream of mitochondria, such as release of cytochrome c, only occur in the vector-transfected MCF7-Fas cells, and no in vivo caspase-8 activity can be detected in the Bcl-x(L)-expressing cells. Our data suggest that, in Bcl-x(L)-expressing MCF7-Fas cells, active caspase-8 is sequestered on the outer mitochondrial surface presumably by association with the protein "bifunctional apoptosis regulator" in a way that does not allow substrates to be cleaved, identifying a novel mechanism of regulation of apoptosis sensitivity by mitochondrial Bcl-x(L).  相似文献   

2.
The low affinity neurotrophin receptor (p75NTR) has been shown to mediate the apoptosis signaling to neural cells. However, the specific mechanisms of intracellular signal transduction of this process are largely unknown. To understand p75NTR-mediated signal transduction, we previously identified a protein that interacts with the intracellular domain of p75NTR, and we named it p75NTR-associated cell death executor (NADE). To elucidate further the signaling mechanisms utilized by p75NTR and NADE, we screened for NADE-binding protein(s) with the yeast two-hybrid method, and we identified 14-3-3epsilon as a NADE-binding protein in vivo. To examine whether 14-3-3epsilon affects the induction of p75NTR-mediated apoptosis, wild type or various deletion mutant forms of 14-3-3epsilon were co-expressed in HEK293, PC12nnr5, and oligodendrocytes. Interestingly, transient expression of the mutant form of 14-3-3epsilon lacking the 208-255 amino acid region blocked nerve growth factor-dependent p75NTR/NADE-mediated apoptosis, although this mutant form of 14-3-3epsilon continued to associate with NADE. These results suggest that 14-3-3epsilon plays an important role in the modulation of nerve growth factor-dependent p75NTR/NADE-mediated apoptosis.  相似文献   

3.
Through protein-protein binding assays, we found that HCV core protein interacted with 14-3-3epsilon protein. Interestingly, the expression of HCV core protein induced apoptosis in 293T cells. The apoptosis induced by core expression is accompanied by translocation of Bax from cytosol to mitochondria, disruption of mitochondrial membrane potential, cytochrome c release, and activation of caspase-9 and caspase-3. Furthermore, over-expression of 14-3-3epsilon inhibited the core-induced apoptosis and Bax translocation to mitochondria. These results indicate that HCV core protein induces the Bax-mediated apoptosis by interacting with 14-3-3epsilon protein in 293T cells. As a mechanism of apoptosis induction by HCV core, we propose that the interaction of HCV core with 14-3-3epsilon causes the dissociation of Bax from the Bax/14-3-3epsilon complex in cytosol, and the free Bax protein provokes activation of the mitochondrial apoptotic pathway.  相似文献   

4.
The human recombinase HsRad51 is cleaved during apoptosis. We have earlier observed cleavage of the 41-kDa full-length protein into a 33-kDa product in apoptotic Jurkat cells and in in vitro translated HsRad51 after treatment with activated S-100 extract. In this study, site-directed mutagenesis was used for mapping of the cleavage site to AQVD274 downward arrow G, which does not correspond to a conventional caspase cleavage site. The absence of HsRad51 cleavage in staurosporine-treated apoptotic MCF-7 cells, which lack caspase-3, indicates that caspase-3 is essential for HsRad51 cleavage in vivo. Cleavage into the 33-kDa fragment was generated by recombinant caspase-3 and -7 in in vitro translated wild type HsRad51, but not in the HsRad51 AQVE274 downward arrow G mutant. Similarly, HsRad51 of Jurkat cell extracts was cleaved into the 33-kDa product by recombinant caspase-3, whereas caspase-7 failed to cleave endogenous HsRad51. The cleavage of in vitro translated wild type and AQVE274 downward arrow G mutant HsRad51 as well as of endogenous HsRad51 also gave rise to a smaller fragment, which corresponds in size to a recently reported DVLD187 downward arrow N HsRad51 cleavage product. In Jurkat cell extracts, the AQVD274 downward arrow G and DVLD187 downward arrow N cleavage products of HsRad51 appeared at equal concentrations of caspase-3. Moreover both fragments were generated by induction of apoptosis in MDA-MB 157 cells with staurosporine and in Jurkat cells with camptothecin. Thus, two sites in the HsRad51 sequence are targets for caspase cleavage both in vitro and in vivo.  相似文献   

5.
6.
Prostate apoptosis response 4 (Par-4) is a ubiquitously expressed proapoptotic tumor suppressor protein. Here, we show for the first time, that Par-4 is a novel substrate of caspase-3 during apoptosis. We found that Par-4 is cleaved during cisplatin-induced apoptosis in human normal and cancer cell lines. Par-4 cleavage generates a C-terminal fragment of ~25 kDa, and the cleavage of Par-4 is completely inhibited by a caspase-3 inhibitor, suggesting that caspase-3 is directly involved in the cleavage of Par-4. Caspase-3-deficient MCF-7 cells do not show Par-4 cleavage in response to cisplatin treatment, and restoration of caspase-3 in MCF-7 cells produces a decrease in Par-4 levels, with the appearance of a cleaved fragment. Additionally, knockdown of Par-4 reduces caspase-3 activation and apoptosis induction. Site-directed mutagenesis reveals that Par-4 cleavage by caspase-3 occurs at an unconventional site, EEPD(131)↓G. Interestingly, overexpression of wild-type Par-4 but not the Par-4 D131A mutant sensitizes cells to cisplatin-induced apoptosis. Upon caspase-3 cleavage, the cleaved fragment of Par-4 accumulates in the nucleus and displays increased apoptotic activity. Overexpression of the cleaved fragment of Par-4 inhibits IκBα phosphorylation and blocks NF-κB nuclear translocation. We have identified a novel specific caspase-3 cleavage site in Par-4, and the cleaved fragment of Par-4 retains proapoptotic activity.  相似文献   

7.
Protein kinase C (PKC) mu is a novel member of the PKC family that differs from the other isozymes in structural and biochemical properties. The precise function of PKCmu is not known. The present studies demonstrate that PKCmu is cleaved during apoptosis induced by 1-beta-d-arabinofuranosylcytosine (ara-C) and other genotoxic agents. PKCmu cleavage is blocked in cells that overexpress the anti-apoptotic Bcl-x(L) protein or the baculovirus p35 protein. Our results demonstrate that PKCmu is cleaved by caspase-3 at the CQND(378)S site. Cleavage of PKCmu is associated with release of the catalytic domain and activation of its kinase function. We also show that, unlike the cleaved fragments of PKCdelta and theta, overexpression of the PKCmu catalytic domain is not lethal. Cells stably expressing the catalytic fragment of PKCmu, however, are more sensitive to apoptosis induced by genotoxic stress. In addition, expression of the caspase-resistant PKCmu mutant partially inhibits DNA damage-induced apoptosis. These findings demonstrate that PKCmu is cleaved by caspase-3 and that expression of the catalytic domain sensitizes cells to the cytotoxic effects of ara-C and other anticancer agents.  相似文献   

8.
This study was designed to identify the role of a recently identified Ca(2+)/calmodulin-dependent protein kinase (CaMK)-like kinase (CaMKLK) in neuronal apoptosis. For this purpose, we studied proteolytic cleavage of CaMKLK by caspases in vitro and in neuronal NG108 cells. In addition, we have investigated the effect of overexpression of wild type and mutant CaMKLK proteins on staurosporine- and serum deprivation-induced apoptosis of NG108 cells. We found that CaMKLK is a substrate for caspase-3 and -8, both in vitro and in NG108 cells during staurosporine- and serum withdrawal-induced apoptosis. Substitution of an aspartic acid residue at position 62 in an asparagine residue within a putative caspase cleavage site completely blocked cleavage of CaMKLK, strongly indicating that (59)DEND(62) is the caspase recognition site. Overexpression of an Asp(62) --> Asn CaMKLK mutant protected NG108 cells from staurosporine-induced apoptosis to a similar extent as Bcl-x(L). In contrast, overexpression of wild type CaMKLK did not lead to protection. Moreover, microinjection of Asp(62) --> Asn CaMKLK protected NG108 cells from serum deprivation-induced apoptosis, while overexpression of a caspase-generated noncatalytic N-terminal CaMKLK fragment exacerbated apoptosis. Together, our data suggest that cleavage of CaMKLK and generation of the noncatalytic N-terminal domain of CaMKLK facilitate neuronal apoptosis.  相似文献   

9.
Alterations in cellular homeostasis that affect protein folding in the endoplasmic reticulum (ER) trigger a signaling pathway known as the unfolded protein response (UPR). The initially cytoprotective UPR will trigger an apoptotic cascade if the cellular insult is not corrected; however, the proteins required to initiate this cell death pathway are poorly understood. In this study, we show that UPR gene expression is induced in cells treated with ER stress agents in the presence or absence of murine caspase-12 or human caspase-4 expression and in cells that overexpress Bcl-x(L) or a dominant negative caspase-9. We further demonstrate that ER stress-induced apoptosis is a caspase-dependent process that does not require the expression of caspase-12 or caspase-4 but can be inhibited by overexpression of Bcl-x(L) or a dominant negative caspase-9. Additionally, treatment of human and murine cells with ER stress agents led to the cleavage of the caspase-4 fluorogenic substrate, LEVD-7-amino-4-trifluoromethylcoumarin, in the presence or absence of caspase-12 or caspase-4 expression, whereas Bcl-x(L) or a dominant negative caspase-9 overexpression inhibited LEVD-7-amino-4-trifluoromethylcoumarin cleavage. These data suggest that caspase-12 and caspase-4 are not required for the induction of ER stress-induced apoptosis and that caspase-4-like activity is not always associated with an initiating event.  相似文献   

10.
Bad is a critical regulatory component of the intrinsic cell death machinery that exerts its death-promoting effect upon heterodimerization with the antiapoptotic proteins Bcl-2 and Bcl-x(L). Growth factors promote cell survival through phosphorylation of Bad, resulting in its dissociation from Bcl-2 and Bcl-x(L) and its association with 14-3-3tau. Survival of interleukin 3 (IL-3)-dependent FL5.12 lymphoid progenitor cells is attenuated upon treatment with the Rho GTPase-inactivating toxin B from Clostridium difficile. p21-activated kinase 1 (PAK1) is activated by IL-3 in FL5.12 cells, and this activation is reduced by the phosphatidylinositol 3-kinase inhibitor LY294002. Overexpression of a constitutively active PAK mutant (PAK1-T423E) promoted cell survival of FL5.12 and NIH 3T3 cells, while overexpression of the autoinhibitory domain of PAK (amino acids 83 to 149) enhanced apoptosis. PAK phosphorylates Bad in vitro and in vivo on Ser112 and Ser136, resulting in a markedly reduced interaction between Bad and Bcl-2 or Bcl-x(L) and the increased association of Bad with 14-3-3tau. Our findings indicate that PAK inhibits the proapoptotic effects of Bad by direct phosphorylation and that PAK may play an important role in cell survival pathways.  相似文献   

11.
Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment during drug- and UV light–induced apoptosis; this fragment comigrates with K18 cleaved in vitro by caspase-6, -3, and -7. K18 is cleaved by caspase-6 into NH2-terminal, 26-kD and COOH-terminal, 22-kD fragments; caspase-3 and -7 additionally cleave the 22-kD fragment into a 19-kD fragment. The cleavage site common for the three caspases was the sequence VEVD/A, located in the conserved L1-2 linker region of K18. The additional site for caspases-3 and -7 that is not cleaved efficiently by caspase-6 is located in the COOH-terminal tail domain of K18. Expression of K18 with alanine instead of serine at position 53 demonstrated that cleavage during apoptosis does not require phosphorylation of serine 53. However, K18 with a glutamate instead of aspartate at position 238 was resistant to proteolysis during apoptosis. Furthermore, this cleavage site mutant appears to cause keratin filament reorganization in stably transfected clones. The identification of the L1-2 caspase cleavage site, and the conservation of the same or very similar sites in multiple other intermediate filament proteins, suggests that the processing of IFs during apoptosis may be initiated by a similar caspase cleavage.  相似文献   

12.
Mast cells play a critical role in the host defense against bacterial infection. Recently, apoptosis has been demonstrated to be essential in the regulation of host response to Pseudomonas aeruginosa. In this study we show that human mast cell line HMC-1 and human cord blood-derived mast cells undergo apoptosis as determined by the ssDNA formation after infection with P. aeruginosa. P. aeruginosa induced activation of caspase-3 in mast cells as evidenced by the cleavage of D4-GDI, an endogenous caspase-3 substrate and the generation of an active form of caspase-3. Interestingly, P. aeruginosa treatment induced up-regulation of Bcl-x(S) and down-regulation of Bcl-x(L). Bcl-x(S), and Bcl-x(L) are alternative variants produced from the same Bcl-x pre-mRNA. The former is proapoptotic and the latter is antiapoptotic likely through regulating mitochondrial membrane integrity. Treatment of mast cells with P. aeruginosa induced release of cytochrome c from mitochondria and loss of mitochondrial membrane potentials. Moreover, P. aeruginosa treatment reduced levels of Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory proteins (FLIPs) that are endogenous apoptosis inhibitors through counteraction with caspase-8. Thus, human mast cells undergo apoptosis after encountering P. aeruginosa through a mechanism that likely involves both the Bcl family protein mitochondrial-dependent and the FLIP-associated caspase-8 pathways.  相似文献   

13.
Human epidermal growth factor receptor-2 (HER-2/ErbB2/neu), a receptor tyrosine kinase that is amplified/overexpressed in poor prognosis breast carcinomas, confers resistance to apoptosis by activating cell survival pathways. Here we demonstrate that the cytoplasmic tail of HER-2 is cleaved by caspases at Asp(1016)/Asp(1019) to release a approximately 47-kDa product, which is subsequently proteolyzed by caspases at Asp(1125) into an unstable 22-kDa fragment that is degraded by the proteasome and a predicted 25-kDa product. Both the 47- and 25-kDa products translocate to mitochondria, release cytochrome c by a Bcl-x(L)-suppressible mechanism, and induce caspase-dependent apoptosis. The 47- and 25-kDa HER-2 cleavage products share a functional BH3-like domain, which is required for cytochrome c release in cells and isolated mitochondria and for apoptosis induction. Caspase-cleaved HER-2 binds Bcl-x(L) and acts synergistically with truncated Bid to induce apoptosis, mimicking the actions of the BH3-only protein Bad. Moreover, the HER-2 cleavage products cooperate with Noxa to induce apoptosis in cells expressing both Bcl-x(L) and Mcl-1, confirming their Bad-like function. Collectively, our results indicate that caspases activate a previously unrecognized proapoptotic function of HER-2 by releasing a Bad-like cell death effector.  相似文献   

14.
It has recently become apparent that the microenvironment made up of the extracellular matrix may affect cell signaling. In this study, we evaluated Fas-triggered apoptosis in T cells in contact with tumor cells, which resembles the cell-to-cell interactions found in tumor regions. Jurkat cells were less susceptible to the Fas-mediated apoptosis when cocultured with U118, HeLa, A549, and Huh-7 tumor cells. This was indicated by less plasma membrane alteration, an amelioration of the loss of mitochondria membrane potential, a decrease in caspase-8 and caspase-3 activation, a decrease in DNA fragmentation factor-45/35 cleavage, and a reduction in the breakage of DNA when compared with Jurkat cells cultured alone. In contrast, the tumor cell lines MCF-7 and HepG2 produced no such protective effect. This protective event was independent of the expression of Fas ligand on the tumor cells. Interrupting the beta integrins-matrix interaction diminished the coculture effect. In Jurkat cells, cell matrix contact reduced the assembly of the Fas death-inducing signaling complex and Bcl-x(L) cleavage, but enhanced the phosphorylation of ERK1/2, p38 MAPK, and Akt. Only PI3K inhibitor, but not kinase inhibitors for MEK, ERK1/2, p38 MAPK, JNK, protein kinase C, and protein kinase A, completely abolished this tumor cell contact-associated protection and in parallel restored Fas-induced Bcl-x(L) cleavage as well as decreasing the phosphorylation of Bad at serine 136. Together, our results indicate that stimulation of the beta integrin signal of T cells by contact with tumor cells may trigger a novel protective signaling through the PI3K/Akt pathway of T cells against Fas-mediated apoptosis.  相似文献   

15.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

16.
Life and death decisions are made by integrating a variety of apoptotic and survival signals in mammalian cells. Therefore, there is likely to be a common mechanism that integrates multiple signals adjudicating between the alternatives. In this study, we propose that 14-3-3 represents such an integration point. Several proapoptotic proteins commonly become associated with 14-3-3 upon phosphorylation by survival-mediating kinases such as Akt. We reported previously that cellular stresses induce c-Jun NH2-terminal kinase (JNK)-mediated 14-3-3zeta phosphorylation at Ser184 (Tsuruta, F., J. Sunayama, Y. Mori, S. Hattori, S. Shimizu, Y. Tsujimoto, K. Yoshioka, N. Masuyama, and Y. Gotoh. 2004. EMBO J. 23:1889-1899). Here, we show that phosphorylation of 14-3-3 by JNK releases the proapoptotic proteins Bad and FOXO3a from 14-3-3 and antagonizes the effects of Akt signaling. As a result of dissociation, Bad is dephosphorylated and translocates to the mitochondria, where it associates with Bcl-2/Bcl-x(L). Because Bad and FOXO3a share the 14-3-3-binding motif with other proapoptotic proteins, we propose that this JNK-mediated phosphorylation of 14-3-3 regulates these proapoptotic proteins in concert and makes cells more susceptible to apoptotic signals.  相似文献   

17.
We report that transfection of insulin-like growth factor-binding protein-3 (IGFBP-3) cDNA in human breast cancer cell lines expressing either mutant p53 (T47D) or wild-type p53 (MCF-7) induces apoptosis. IGFBP-3 also increases the ratio of pro-apoptotic to anti-apoptotic members of the Bcl-2 family. In MCF-7, an increase in Bad and Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein and mRNA were observed. In T47D, Bax and Bad proteins were up-regulated; Bcl-2 protein is undetectable in these cells. As T47D expresses mutant p53 protein, these modulations of pro-apoptotic proteins and induction of apoptosis are independent of p53. The effect of IGFBP-3 on the response of T47D to ionizing radiation (IR) was examined. These cells do not G(1) arrest in response to IR and are relatively radioresistant. Transfection of IGFBP-3 increased the radiosensitivity of T47D and increased IR-induced apoptosis but did not effect a rapid G(1) arrest. IR also caused a much greater increase in Bax protein in IGFBP-3 transfectants compared with vector controls. Thus, IGFBP-3 increases the expression of pro-apoptotic proteins and apoptosis both basally and in response to IR, suggesting it may be a p53-independent effector of apoptosis in breast cancer cells via its modulation of the Bax:Bcl-2 protein ratio.  相似文献   

18.
19.
The neuropeptide PACAP (pituitary adenylate cyclase activating polypeptide) and its receptors are widely expressed in the nervous system and various other tissues. PACAP has well-known anti-apoptotic effects in neuronal cell lines. Recent data suggest that PACAP exerts anti-apoptotic effects also in non-neuronal cells. The peptide is present in the cardiovascular system, and has various distinct effects. The aim of the present study was to investigate whether PACAP is protective against in vitro ischemia/reperfusion-induced apoptosis in cardiomyocytes. Cultured cardiomyocytes were exposed to 60 min ischemia followed by 120 min reperfusion. The addition of PACAP1-38 significantly increased cell viability and decreased the ratio of apoptotic cells as measured by MTT test and flow cytometry. PACAP induced the phosphorylation of Akt and protein kinase A. In the present study we also examined the possible involvement of Akt- and protein kinase A-induced phosphorylation and thus inactivation of Bad, a pro-apoptotic member of the Bcl-2 family. It was found that ischemia significantly decreased the levels of phosphorylated Bad, which was counteracted by PACAP. Furthermore, PACAP increased the levels of Bcl-xL and 14-3-3 protein, both of which promote cell survival, and decreased the apoptosis executor caspase-3 cleavage. All effects of PACAP1-38 were inhibited by the PACAP antagonist PACAP6-38. In summary, our results show that PACAP has protective effects against ischemia/reperfusion-induced cardiomyocyte apoptosis and provides new insights into the signaling mechanisms involved in the PACAP-mediated anti-apoptotic effects.  相似文献   

20.
Protein kinase C (PKC) family members play pivotal roles in cellular signal transduction and nPKCdelta and theta are known to be subjected to restrictive proteolysis during apoptosis. Here we show that nPKCepsilon was specifically cleaved and generates 43-kDa and 36-kDa C-terminal fragments during chemotherapeutic drug-induced apoptosis. The proteolytic cleavage of nPKCdelta and epsilon was completely inhibited by pretreatment with Ac-DEVD-cho, a specific inhibitor of caspase-3 family enzymes. Furthermore, nPKCepsilon in non-treated U937 cell lysates was cleaved by purified recombinant caspase-3 to generate the 43-kDa fragment, identical in size to the fragment observed in vivo. This cleavage was prevented by the addition of Ac-DEVD-cho. These results suggest that caspase-3 specifically cleaves nPKCepsilon. These findings suggest the possibility that nPKC subfamily members are generally involved in the execution of apoptosis but they are regulated diversely depending on the different apoptotic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号