首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel detection of a single Plasmodium falciparum in infected blood   总被引:9,自引:0,他引:9  
Detection of Plasmodium falciparum malaria by a specific DNA probe is a highly promising means for epidemiological surveillance of human malaria. However, none of presently available DNA probe methods could detect as little as a few parasites in infected blood. By amplification of a specific 206 base pairs P. falciparum DNA sequence using the polymerase chain reaction (PCR), as little as 0.01 picogram DNA or one-half of a parasite was sufficient for a specific detection. A PCR procedure for detection of P. falciparum in infected blood without prior DNA extraction was also developed which was sensitive for a single parasite. The procedure was simple and should be applicable for a large scale epidemiological study involving a very low parasitemia situation.  相似文献   

2.
In order to develop tools for an early serodiagnosis of Plasmodium falciparum infection, we evaluated the usefulness of P. falciparum liver stage antigen-3 (LSA-3) as a serodiagnostic antigen. A portion of LSA-3 gene was cloned, and its recombinant protein (rLSA-3) was expressed in Escherichia coli and purified by column chromatography. The purified rLSA-3 and 120 test blood/serum samples collected from inhabitants in malaria-endemic areas of Mandalay, Myanmar were used for this study. In microscopic examinations of blood samples, P. falciparum positive rate was 39.1% (47/120) in thin smear trials, and 33.3% (40/120) in thick smear trials. Although the positive rate associated with the rLSA-3 (30.8%) was lower than that of the blood stage antigens (70.8%), rLSA-3 based enzyme-linked immunosorbent assay could detect 12 seropositive cases (10.0%), in which blood stage antigens were not detected. These results indicate that the LSA-3 is a useful antigen for an early serodiagnosis of P. falciparum infection.  相似文献   

3.
Multiplication of the human malaria parasite Plasmodium falciparum within red blood cells is an energy-dependent process and glucose consumption increases dramatically in infected red blood cells (IRBC) versus normal red blood cells (NRBC). The major pathway for glucose metabolism in P. falciparum IRBC is anaerobic glycolysis. Phosphoglycerate kinase (PGK) is one of the key enzymes of this pathway as it generates ATP. We found that the PGK specific activity in P. falciparum IRBC is seven times higher than that in NRBC. The parasitic origin of the increase in PGK activity is confirmed by isoelectric focusing. Indeed, two P. falciparum isoenzymes with neutral isoelectric points were detected. P. falciparum PGK in purified form has a molecular mass of 48 kDa. Antiserum raised against purified P. falciparum PGK specifically recognizes the 48-kDa protein band in P. falciparum and also reacts with P. berghei and P. yoelii IRBC lysates but does not cross-react with PGK associated with NRBC.  相似文献   

4.
Over 2,000 cases of imported malaria have been confirmed by blood examination. Ninety percent. of cases from tropical Africa were infected with P. falciparum. Most of the patients were Caucasians and had primary infections. All developed fever within a month after arrival and most of them within two weeks of arrival. In some patients malaria parasites were seen in routine blood films.Developing forms of P. falciparum were always present in the peripheral blood of patients suffering from a primary attack which was not diagnosed or treated until a week or more after the onset of fever.All deaths investigated were caused by P. falciparum and were primary infections.In not one of the P. falciparum infections did the victim continue taking prophylactic drugs for more than a few days after leaving the endemic area. Had drugs been continued for one month probably not a single overt case of P. falciparum would have occurred.A primary attack of P. falciparum malaria is seldom, if ever, classical in that the fever is never tertian and may resemble clinically many other diseases.Children in boarding-schools returning from the tropics should be supplied with prophylactic tablets and instructions to the matron. If there is an epidemic of a fever any students who have recently returned from the tropics should have a blood film examined for malaria.The risk of contracting malaria among drug addicts is considerable, especially with P. falciparum.  相似文献   

5.
A combination of chloroquine (CQ) and primaquine (PQ) had been used as the first-line treatment of uncomplicated Plasmodium falciparum malaria in Rangamati, Bangladesh until the end of 2004. Doctors or medical staffs had felt that CQ plus PQ had become less effective against uncomplicated falciparum malaria patients, but that it was more effective against the minority-indigenous patients than the Bengali patients. The efficacy of CQ plus PQ and the mutation status of the CQ resistance transporter (pfcrt) gene of infecting P. falciparum were, thus, investigated for 45 uncomplicated falciparum malaria patients in Rangamati in 2004. The total failure rate was 57.8%. One or two pfcrt sequences (CIETH and SMNTH at positions 72, 74-76, and 97, mutation underlined) with K76T mutation known to be related to CQ-resistant phenotype were detected in 38 patients' blood samples. Of the 38 patients, in total 15 patients (14/25 minority-indigenous and 1/13 Bengali patients) resulted in adequate clinical and parasitological response (ACPR). There was a statistically significant difference in ACPR rate between the minority-indigenous patients and the Bengali patients. P. falciparum with mutant or resistant pfcrt (pfcrt-resistant) was detected by PCR in blood samples on day 28 for 10 ACPR minority-indigenous patients but not for the only one Bengali ACPR patient, who all were infected with pfcrt-resistant P. falciparum on day 0. The minority-indigenous patients, but not Bengalis, are suggested to be often cured by CQ plus PQ, leaving a very few parasites detectable only by PCR, even when they are infected with pfcrt-resistant P. falciparum.  相似文献   

6.
Three membrane thermotropic transitions at 8, 20, and 40 degrees C have been detected in human red blood cells (RBC) by using spin-labeled stearic acids. Red blood cells infected in vitro by Plasmodium falciparum showed the disappearance of the 8 degrees C transition and a lowering of the 40 degrees C transition to 32 degrees C. The disappearance of the 8 degrees C transition was observed in synchronized cultures of P. falciparum trophozoites as well as in mouse RBC infected in vivo by an asynchronous population of P. berghei. Furthermore, erythrocytes infected by P. falciparum showed an increase in the phosphorylation of protein 4.1. This protein was shown previously to be involved in the 8 degrees C transition, (T. Forte, T. L. Leto, M. Minetti, and V. T. Marchesi, Biochemistry 24, 7876-7880 (1985). Our results suggest that the malaria parasite invasion produces a disorganization of the protein 4.1-membrane interaction.  相似文献   

7.
Chromosomal DNA was prepared from seven Plasmodium falciparum isolates that had been cultured in vitro and from a cloned P. falciparum line. The DNA was cleaved with restriction endonucleases, fractionated by agarose gel electrophoresis, blotted to nitrocellulose, and hybridized with a series of radioactively labeled DNA probes. The probes had been derived from cDNA clones encoding portions of P. falciparum antigens. Simple, reproducible band patterns that differed for many of the isolates were obtained. Parasite isolates collected from different continents could be readily distinguished, as could some but not all isolates collected from one restricted region of Papua New Guinea. Application of this technique for the identification and differentiation of parasite strains was explored. The patterns of hybridization observed were consistent with the proposition that blood stages of P. falciparum have a haploid genome.  相似文献   

8.
The rotary nanomotor ATP synthase is a central player in the bioenergetics of most organisms. Yet the role of ATP synthase in malaria parasites has remained unclear, as blood stages of Plasmodium falciparum appear to derive ATP largely through glycolysis. Also, genes for essential subunits of the F(O) sector of the complex could not be detected in the parasite genomes. Here, we have used molecular genetic and immunological tools to investigate the localization, complex formation, and functional significance of predicted ATP synthase subunits in P. falciparum. We generated transgenic P. falciparum lines expressing seven epitope-tagged canonical ATP synthase subunits, revealing localization of all but one of the subunits to the mitochondrion. Blue native gel electrophoresis of P. falciparum mitochondrial membranes suggested the molecular mass of the ATP synthase complex to be greater than 1 million daltons. This size is consistent with the complex being assembled as a dimer in a manner similar to the complexes observed in other eukaryotic organisms. This observation also suggests the presence of previously unknown subunits in addition to the canonical subunits in P. falciparum ATP synthase complex. Our attempts to disrupt genes encoding β and γ subunits were unsuccessful, suggesting an essential role played by the ATP synthase complex in blood stages of P. falciparum. These studies suggest that, despite some unconventional features and its minimal contribution to ATP synthesis, P. falciparum ATP synthase is localized to the parasite mitochondrion, assembled as a large dimeric complex, and is likely essential for parasite survival.  相似文献   

9.
A PCR method involving a genus-specific oligonucleotides set and Southern blot hybridization with four species-specific probes to P. falciparum, P. vivax, P. malariae and P. ovale was evaluated for the detection of malaria parasites in blood samples from 101 patients with clinically suspect malaria infection imported to Italy. Plasmodium falciparum was the main species detected. As determined by microscopy, 53 (52.4%) patients had malaria and of these: 40 (75.5%) were infected with P. falciparum; 7 (13.2%) with P. vivax; 1 (1.9%) with P. ovale; 3 (5.7%) with P. malariae; 1 (1.9%) with P. vivax or P. ovale; and 1 (1.9%) with P. falciparum or P. vivax. Ninety-seven out 101 blood samples were submitted to ParaSight-F test which showed a sensitivity of 94.73%, and a specificity of 93.22%, as compared to microscopy. The PCR assay using the genus-specific oligonucleotide primer set (pg-PCR) was able to detect 53 (52.4%) infections and showed a sensitivity of 100% and a specificity of 100%, when compared to microscopy. The parasite species were identified by Southern blot hybridization using species-specific probes and 40 (75.5%) samples were P. falciparum positive, 5 (9.4%) P. vivax positive, 4 (7.5%) P. ovale positive, and 2 (3.8%) P. malariae positive. When the Southern blot results were compared to those of blood-film diagnosis, we observed some disagreement. In particular, compared to Southern blot, microscopy underestimated P. ovale infection; blood film analysis recognised only 1 P. ovale sample, whereas Southern blot recognised 4 P. ovale positive samples (by microscopy, 2 of these were detected as P. vivax, 1 as P. ovale or P. vivax, and the other as P. falciparum or P. vivax). Southern blot hybridization was unable to identify one P. falciparum and one P. vivax positive case detected by microscopy. We also plan to use a reference nested-PCR assay to clarify the disagreement observed between microscopy and Southern blot hybridization.  相似文献   

10.
To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/-) mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/-) mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9) as a reference strain for model development. Pf3D7(0087/N9) caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.  相似文献   

11.
A comparison of independent cultured isolates of Plasmodium falciparum revealed that while chromosome number was constant, the sizes of analogous chromosomes varied widely. We show here that chromosome size polymorphisms are not generated during differentiation of the asexual blood stages, as the molecular karyotype of a cloned parasite line is constant through this part of the life cycle. Experiments using whole P. falciparum chromosomes as hybridization probes to examine polymorphisms within two independent parasite populations indicate that the polymorphisms observed here are not the consequence of large-scale interchromosomal exchanges, and imply that deletions/duplications represent one mode of generating chromosome length polymorphisms. Although the deletions probably involve repetitive DNA, we show here that structural genes for P. falciparum antigens can also be lost. Furthermore, these dramatic size polymorphisms occur not only in cultured lines of P. falciparum, but with surprising frequency in natural malarial infections.  相似文献   

12.
A hemotropic parasite of the genus Haemo bartonella (rickettsial parasite of the Family Anaplasmataceae) is responsible for latent asymptomatic infection in colony-born Saimiri monkeys. Indeed, many of these animals develop a patent Haemobartonella infection following splenectomy. Such patent parasitism is characterized by an intense Haemobartonella parasitemia which peaks between days 12 and 14 after removal of the spleen and then decreases to become undetectable between days 25 and 30. During the resolving phase of parasitemia, a moderate anemia associated with monocytosis and erythrophagocytosis is observed. In certain Saimiri monkeys, Haemobartonella parasitemia remains latent following removal of the spleen. This indicates that the spleen plays a role but is not necessary to maintain latent Haemobartonella parasitism. It also suggests the existence of heterogeneity in the host immune reactivity to the parasite. Latent or patent haemobartonellosis might raise a problem when Saimiri monkeys are used as experimental hosts of Plasmodium falciparum asexual blood stages, as already noticed with "rodent malaria." Thus we investigated the relationship between Haemobartonella and P. falci parum in splenectomized monkeys. When animals harboring latent Haemobartonella sp. were infected with P. falciparum, the former remained latent and exerted no influence on the course of the P. falciparum parasitemia. In constrast, when P. falciparum was initiated in animals which were in the process of developing patent haemobarto nellosis, the course of the former was protracted and either the animal resisted longer, or it self-cleared the P. falciparum infection. Conversely, patent haemobartonellosis was delayed when splenectomy was performed at different times after initiation of P. falciparum infection in intact monkeys. Our results do not allow us to draw conclusions as to the mechanism(s) of the antagonism between the two parasites, but they emphasize the need to monitor the presence of Haemobartonella when splenectomized Saimiri monkeys are used as experimentals hosts for P. falciparum parasitism.  相似文献   

13.
The C-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP-119) is at present a leading malaria vaccine candidate. Antibodies against the epidermal growth factor-like domains of MSP-1 19are associated with immunity to P. falciparum and active immunization with recombinant forms of the molecule protect against malaria challenge in various experimental systems. These findings, with the knowledge that epidermal growth factor-like domains in other molecules have essential binding functions, indicate the importance of this protein in merozoite invasion of red blood cells. Despite extensive molecular epidemiological investigations, only limited sequence polymorphism has been identified in P. falciparum MSP-119 (refs. 9-11). This indicates its sequence is functionally constrained, and is used in support of the use of MSP-119 as a vaccine. Here, we have successfully complemented the function of most of P. falciparum MSP-119 with the corresponding but highly divergent sequence from the rodent parasite P. chabaudi. The results indicate that the role of MSP-119 in red blood cell invasion is conserved across distantly related Plasmodium species and show that the sequence of P. falciparum MSP-119 is not constrained by function.  相似文献   

14.
We demonstrate, for the first time, a functional polyamine biosynthetic pathway in the malaria parasite Plasmodium falciparum that culminates in the synthesis of spermine. Additionally, we also report putrescine and spermidine salvage in the malaria parasite. Putrescine and spermidine transport in P. falciparum infected red blood cells is a highly specific, carrier mediated and active process, mediated by new transporters that differ from the transporters of uninfected red blood cells in their kinetic parameters, Vmax and km, as well as in their activation energy.  相似文献   

15.
Li A  Lim TS  Shi H  Yin J  Tan SJ  Li Z  Low BC  Tan KS  Lim CT 《PloS one》2011,6(3):e16929
Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the 'holder' for providing stable binding.  相似文献   

16.
A multiplex PCR was designed for the differential diagnosis of the two parasite species by targeting the 18S rRNA gene with a set of primer combinations, amplifying DNA fragments of 1451-bp and 833-bp for P. falciparum and P. vivax, respectively. The sensitivity of this PCR test was high, as minimal as 0.1 parasite per one microliter of blood sample and a minimum of four copies of the target gene could be detected. For the diagnosis of mixed infection of two Plasmodium spp., there were no apparent competition or cross-reaction between the majority and minority Plasmodium species. The multiplex PCR was evaluated on 210 clinical samples and 60 normal controls. The PCR test yielded highly concordant results with microscopic examination, with the only one exception of a mixed (P. falciparum plus P. vivax) infection case, which was diagnosed as a single infection of P. falciparum by microscopy. We propose that the multiplex PCR is a sensitive, specific, and rapid tool that can serve as a useful differential diagnostic tool for detecting P. falciparum and P. vivax.  相似文献   

17.
This study evaluated a newly developed rapid malaria diagnostic test, OptiMAL Assay, to detect "Plasmodium falciparum malaria" and "non Plasmodium falciparum malaria" in blood samples from 139 individuals with a presumptive clinical diagnosis of imported malaria in Italy. OptiMAL Assay utilizes a dipstick coated with monoclonal antibodies against the intracellular metabolic enzyme, plasmodium Lactate Dehydrogenase (pLDH) present in and released from parasite-infected erythrocytes. Blood samples from 56 cases out of 139 were found "Plasmodium falciparum malaria" positive by microscopy; with these samples OptiMAL Assay and the ParaSight-F test, which is a kit detecting the P. falciparum histidin-rich protein 2 (HRP-2), showed an overall sensitivity of 83% and 94%, respectively, in comparison with microscopy. Parasitemia levels tested in the 56 P. falciparum positive blood samples by microscopy ranged from <0.004% to 20%. A correlation between sensitivity and parasitemia was evident and OptiMAL Assay and ParaSight-F test were more sensitive (96-100%; 100%) with samples with 0.1%-20% levels of parasitemia, while proved less sensitive (0-44%; 50-88%) with <0.004-0.01% levels of parasitemia.  相似文献   

18.
Monoclonal antibodies were raised against a recombinant molecule corresponding to the polypeptide 72 kDa, previously described as possibly related to protection in Plasmodium falciparum infection. Selection of hybridoma cell lines was done by immunofluorescence to guarantee the reactivity of the monoclonal antibodies both against the recombinant and the native molecule of the parasite. Monoclonal antibodies were characterized by serological and immunochemical techniques. Competitive binding assays between monoclonal antibodies defined four different B epitopes. One epitope is specific for P. falciparum, a second is also present in P. vivax, while the two others seem to be ubiquitous and are also present in the rodent parasite P. chabaudi. The ubiquitous epitope 72.C is apparently the only one recognized by squirrel monkey sera presenting protective antibodies against the asexual blood infection by P. falciparum.  相似文献   

19.
ABSTRACT: BACKGROUND: Sabang Municipality, in Aceh Province, Indonesia, plans to initiate a malaria elimination programme in 2013. A baseline survey of the distribution of malaria in the municipality was conducted to lay the foundations for an evidence-based programme and to assess the island's readiness to begin the elimination process. METHODS: The entire population of the municipality was screened for malaria infection and G6PD deficiency. Specimens collected included blood slides, blots and tubes for selected households. Results and Discussion Samples were collected from 16,229 residents. Microscopic examination of the blood smears revealed 12 malaria infections; 10 with Plasmodium falciparum and 2 with Plasmodium vivax. To confirm the parasite prevalence, polymerase chain reaction (PCR) diagnosis was performed on the entire positive cases by microscopy and randomized 10% of the microscopically negative blood samples. PCR revealed an additional 11 subjects with malaria; one P. falciparum infection from the village of Paya Keunekai, and nine P. vivax infections and one mixed P. falciparum/P. vivax infection from the village of Batee Shok. The overall slide positivity rate was 0.074% (CI 95%: 0.070 - 0.078) and PCR corrected prevalence 0,590% (CI 95%: 0.582 - 0.597). Analysis of 937 blood samples for G6PD deficiency revealed two subjects (0.2%) of deficient G6PD. Analysis of several genes of the parasite, such as Pfdhfr, Pfdhps, Pfmdr1, Pfcrt, Pfmsp1, Pfmsp2, Pvdhfr, Pvdhps, Pvmdr1 and host gene, such as G6PD gene revealed that both P. falciparum and P. vivax carried the mutation associated with chloroquine resistance. CONCLUSION: Malariometric and host genetic analysis indicated that there is a low prevalence of both malaria and G6PD deficiency in the population of Sabang Municipality. Nevertheless, malaria cases were clustered in three rural villages and efforts for malaria elimination in Sabang should be particularly focused on those three villages.  相似文献   

20.
We find Wr(a + b-) erythrocytes of donor M. Fr., which appear to carry a rare glycophorin A variant, to be fully susceptible to invasion by nine isolates of Plasmodium falciparum. Thus we fail to confirm the previous publication on the refractoriness of these erythrocytes. In addition the serum of donor M. Fr., which is known to contain anti-Wrb directed against an epitope located on glycophorin A in close proximity to the erythrocyte membrane, was not found to inhibit P. falciparum invasion of blood group O Rh- red blood cells. Despite this, different lines of evidence still indicate that glycophorin A is one of the receptors for erythrocyte invasion by P. falciparum. The Wrb epitope, however, does not appear to represent a distinct receptor site, which is in contrast to previous suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号