首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal and pollination-induced senescence of Petunia hybrida L cv. Pink Cascade flowers is accompanied by an increase in the sensitivity of the corolla to ethylene as indicated by an acceleration in the rate of corolla bluing after exposure to exogenous ethylene. Pollination resulted in the production of short-chain saturated fatty acids ranging in chain length from C6 to C10. Following pollination, these acids are synthesized in the stylar tissue via the acetate pathway within the first 12 hours. The fatty acids are transported rapidly to the corolla where they induce an increase in ethylene sensitivity. In unpollinated flowers, these acids are produced in the corolla during the early stages of senescence. Although the levels of these fatty acids decrease rapidly during the final stages of senescence, a significant increase in ethylene sensitivity could be detected prior to the decrease. It appears that the increase in ethylene sensitivity caused by the synthesis of short-chain saturated fatty acids occurs concurrently, but independent from ethylene synthesis.  相似文献   

2.
The longevity of cut Phalaenopsis (Phalaenopsis hybrid, cv. Herbet Hager) flowers is normally 2 to 3 weeks. After pollination however, there was a rapid acceleration of the wilting process, beginning after only 24 h. Enhancement of senescence in several Phalaenopsis cultivars as well as in Doritaenopsis, Dendrobium and Cymbidium, was induced by successful pollination and only slightly or not at all by emasculation. Wilting of the flowers was accompanied by a loss of water from cells of the upper layer of the petals, leading to their upward folding. Following pollination there was an increase in ethylene production and sensitivity to ethylene. The increase in ethylene production began about 10 h after pollination and reached its peak after 30 h. An obvious increase in sensitivity to ethylene could already be detected 4 h after pollination and reached its peak 10 h after pollination. The increase en ethylene sensitivity following pollination was not dependent on endogenous ethylene production as it occurred also in flowers treated with (aminooxy)acetic acid, an inhibitor of ethylene biosynthesis.Abbreviations AOA = (aminooxy)acetic acid - RH = relative humidity - SEM = scanning electron microscope  相似文献   

3.
In Cymbidium flowers emasculation by removal of the anther capand the pollinia, led to rapid colouration of the lip and advancedwilting of the petals and sepals. The ethylene production ofwhole flowers showed an emasculation-induced early peak in ethyleneevolution followed some days later by a second increase concomitantwith the wilting of the flower. In non-emasculated flowers theethylene production increased later and simultaneously withcolouration of the lip and wilting of the petals and sepals.At all stages of senescence, the contribution of the lip, petals,and sepals to the total amount of ethylene produced was negligible. Parallel to the increase in ethylene production of whole flowers,an increase in 1-aminocyclopropane-l-carboxylic acid (ACC) andmalonyl-ACC (MACC) in the central column and, to a lesser extent,in the ovary was observed. Also an increase in internal ethyleneconcentration was demonstrated and this, in contrast, was apparentin all the different flower parts. The activity of the ethylene-formingenzyme in lips, petals, and sepals showed an increase afteremasculation and such an effect could also be induced by treatmentof isolated lips with low concentrations of ethylene. The data indicate that senescence in Cymbidium flowers is regulatedby the central column and perhaps the ovary and that both ACCand ethylene may play a signalling role in inter-organ communication. Key words: 1-aminocyclopropane-l-carboxylic acid, ethylene, Cymbidium, senescence  相似文献   

4.
Treatment of Cymbidium (Orchidaceae) flowers with 10/μl/liter ethylene for up to 78 hr induces anthocyanin formation in both gynostemia (columns) and labella (lips). After that, pigment levels decrease. During 24-hr exposures, ethylene concentrations of 0.1, 1, and 10μl/ liter cause increased anthocyanin levels in both lips and columns. Ethylene also brings about color changes in the calli and wilting of the perianth, but it does not cause straightening of gynostemia and stigmatic closure. Emasculation effects are similar to those of ethylene, whereas pollination and NAA induce anthocyanin formation and closing of stigmas, as well as swelling and loss of curvature in gynostemia. The effects of ethylene are correlated with its action in other systems.  相似文献   

5.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

6.
The effect of cis-propenylphosphonic acid (PPOH), a structural analoge of ethylene, on flower wilting and ethylene production was investigated using cut carnation flowers which are very sensitive to ethylene. Wilting (petal in-rolling) of the flowers was delayed by continuously immersing the stems in a 5–20 mM PPOH solution. In addition, the continuous treatment with PPOH markedly reduced autocatalytic ethylene production of the petals accompanying senescence. This reduction of autocatalytic ethylene production was considered responsible for the inhibitory effect of PPOH on flower wilting. The inhibitory activity of trans-propenylphosphonic acid (trans-PPOH), on both flower wilting and the autocatalytic ethylene production accompanying senescence was markedly lower than that of PPOH, suggesting that PPOH action is stereoselective. PPOH may be of interest as a new, water-soluble inhibitor of wilting and autocatalytic ethylene production in cut carnation flowers.  相似文献   

7.
In Cymbidium flowers, emasculation by removal of the pollinia and the anther cap leads within 24 hours to red coloration of the labellum (lip). Lip coloration, being the first sign of senescence in these flowers, has been ascribed to the action of ethylene in the lip. When a small incision in the base of the lip is made prior to emasculation, or when the lip is excised and placed in water within 10 to 15 hours after emasculation, coloration is considerably delayed. This indicates that a coloration-associated factor is moving in or out of the lip. Measurements of ethylene production of excised flower parts, isolated at different times after emasculation, showed an increase only in the central column; the other flower parts, including the lip, did not show a measurable change. In contrast, in situ measurements of the ethylene production of the central column and the remaining portion of the flower revealed a simultaneous increase in all the flower parts following emasculation. Similarly, application of radiolabeled 1-aminocyclopropane-1-carboxylic acid (ACC) to the top of the central column in situ leads to the production of radiolabeled ethylene by all the flower parts. In addition, the ethylene production of isolated lips, measured immediately after excision, was initially high but ceased within 10 to 15 minutes. Treatment of the central column in situ with ethylene or ethephon did not stimulate ACC production but did stimulate lip coloration and this was accompanied by an increased internal ethylene concentration in the lip. The data indicate that endogenously produced as well as applied ACC is rapidly translocated from the site of production or application to all the other flower parts where it is immediately converted into ethylene. By excision of a flower organ, the influx of ACC is prevented, causing a rapid decrease in ethylene production. In addition, it was found that ethylene may also be translocated in physiologically significant amounts within the flower. The roles of ACC and ethylene as mobile senescence or wilting factors in emasculation- and pollination-induced senescence is discussed.  相似文献   

8.
InBulbophyllum involutum andB. ipanemense (Orchidaceae), two closely related species, shortly after removal the pollinarium has a diameter of approximately twice that of the entrance of the stigmatic cavity, requiring a mean time of 105 to 135 minutes to shrink in width and allow pollination. Because the pollinators of these species remain for some minutes in the same flower after removing the pollinia this mechanism, previously unknown inOrchidaceae, may be very important in preventing self-pollination. This mechanism does not occur inB. weddellii, and the pollinator does not remain in the flower after removing the pollinia. The smaller diameter of the stigmatic cavity inB. involutum reduces by 50% the chances of interspecific pollination withB. weddellii, and interspecific crossing is strictly unidirectional. This is important in maintaining isolation between these sympatric species, which share the same pollinators and have synchronized flowering.  相似文献   

9.
To characterise the physiology of development and senescence for Grevillea Sylvia floral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20 °C or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r2 = 0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. Sylvia is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.  相似文献   

10.
To understand the factors that induce floral senescence in Hibiscus syriacus L., we have investigated the effects of various chemical agents on flower senescence at two different flowering stages, before and after full bloom, as well as the relationship between flower longevity and endogenous ethylene production before full bloom. Treatments with ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ethephon enhanced floral senescence, while aminoethoxyvinylglycine (AVG) promoted flower longevity regardless of treatment timing. Although ethanol slightly extended flower longevity, abscisic acid (ABA), nitric oxide, boric acid and sucrose, which have been reported to affect flower longevity or senescence, had no effect on H. syriacus floral senescence. The polyamine spermine (SPM), methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of SPM biosynthesis, and cycloheximide (CHI) accelerated flower senescence when applied before full bloom, but had no effect when applied after full bloom. SPM, MGBG and CHI treatments resulted in enhanced ethylene production during flower opening, and the promotion of flower senescence is mediated by ethylene production prior to full bloom. Furthermore, endogenous ethylene, spontaneously produced before blooming, was closely associated with floral senescence. These results suggest that ethylene production during flower opening plays a key role in determining the timing of Hibiscus flower senescence.  相似文献   

11.
To elucidate the role of the plant hormones—abscisic acid (ABA) and ethylene during flower senescence in roses, experiments were conducted on two cultivars of cut-roses (Rosa hybrida L.), ‘Grandgala’ and ‘First Red,’ obtained from a commercial grower. An apparent similarity was observed during flower senescence and accumulation of endogenous ABA in petal tissue. Several fold increase in ABA concentration was observed during the later stages of senescence which was found to be associated with a drastic reduction of flower water potential and water uptake. During the later stages of senescence (S5–S6) higher ABA concentration coincides with the elevated concentration of ethylene production. ABA and ethylene both stimulate senescence and are suggested to interact during flower senescence under water limitations.  相似文献   

12.
Application of linoleic and linolenic acids to Phalaenopsis and Dendrobium flowers enhanced their senescence and promoted ethylene production. This effect was specific to unsaturated fatty acids which serve as substrates for lipoxygenase action, and did not occur following similar treatments with saturated fatty acids. Several major lipoxygenase pathway metabolites including jasmonic acid methyl ester, traumatic acid, trans -2-hexenal and cis -3-hexenol also enhanced flower senescence. Jasmonic acid methyl ester promoted ethylene production by Phalaenopsis flowers. In contrast, treating flowers with the lipoxygenase inhibitors salicylhydroxamic acid and n -propyl gallate. which inhibite(d) lipoxygenase activity in vitro, had no effect on pollination-induced senescence of the flowers. Furthermore, during the 50-h period following pollination, there was no increase in lipoxygenase activity in Phalaenopsis flowers. During the 10-h period from pollination of Dendrobium flowers until the initiation of ethylene production, there was no effect of pollination on jasmonate levels in either the perianth or the columns. These results suggest that lipoxygenase activity and jasmonates are not directly involved in pollination-induced Phalaenopsis and Dendrobium flower senescence.  相似文献   

13.
The behavior of visitors to the flowers of the orchidEpipactis thunbergii was studied, with special attention to the role of the epichile in the pollination process. Only four species of syrphid flies legitimately pollinated the flower, among whichSphaerophoria macrogaster was regarded as the most effective pollinator. The movable epichile, possessing a furrow at its base, played a critical role in the pollination process: it threw the syrphid fly onto the stigmatic surface when both sides of the basal slanting surface of the furrow were presumably pressed in the direction of the hypochile by the fore (and middle) legs of the retreating syrphid fly. At this moment, the fly received a set of pollinia on the thorax.  相似文献   

14.
该研究采用RT-PCR和RACE技术从春兰(Cymbidium goeringii)中分离到1个SEPALLATA3(SEP3)基因。序列分析表明,该基因含有1个732bp的开放阅读框(ORF),共编码243个氨基酸。系统进化树分析显示,该基因是MADS-box基因家族AP1/AGL9组SEP的同源基因,其编码蛋白与其它植物SEP3类蛋白具有较高的一致性,命名为CgSEP3(登录号为KF924272)。实时荧光定量分析表明,CgSEP3在春兰花器官中均有表达,其中在唇瓣、侧瓣和萼片中的表达量较高,在子房和蕊柱中的表达量较低;而且CgSEP3在花发育各个时期都有表达,在1~2cm的花芽中表达量最高,在盛开的花中的表达量最低。研究认为,CgSEP3基因可能在春兰花瓣和萼片的形成过程中具有重要作用。  相似文献   

15.
The pollination biology of a population of 250 Yucca elata (Liliaceae) plants was studied in southern New Mexico. Yucca elata and the prodoxid yucca moth Tegeticula yuccasella have a mutualistic association that is essential for the successful sexual reproduction of both species. However, a wide range of other invertebrate species visit flowers during the day and at night. Our aim was to quantify the role of yucca moths and other invertebrate visitors in pollination and fruit set, using manipulative field experiments. Inflorescences were bagged during the day or night (N=12 inflorescences) to restrict flower visitors to either nocturnal or diurnal groups. Yucca moths were active exclusively nocturnally during the flowering period and thus did not visit inflorescences that were unbagged during the day. None of the 4022 flowers exposed only to diurnal visitors set fruit, whereas 4.6% of the 4974 flowers exposed only to nocturnal visitors (including yucca moths) produced mature fruit. The proportion of flowers producing fruit in the latter treatment was not significantly different from unbagged control inflorescences. In a series of experimental manipulations we also determined that: (1) flowers opened at dusk and were open for two days on average, but were only receptive to pollen on the first night of opening; (2) pollen must be pushed down the stigmatic tube to affect pollination; and (3) most plants require out-cross pollination to produce fruit. The combination of these results strongly suggests that yucca moths are the only species affecting pollination in Y. elata, and that if another species was to affect pollination, it would be a rare event.  相似文献   

16.
1,1-Dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS)inhibited ethylene productionin carnation flowers during natural senescence, butdid not inhibit the ethyleneproduction induced by exogenous ethylene in carnationflowers, by indole-3-acetic acid (IAA) in mungbean hypocotylsegments and by wounding in winter squashmesocarp tissue. These findings suggested that DPSSdoes not directly inhibit ethylene biosynthesis fromL-methionine to ethylenevia S-adenosyl-L-methionine and1-aminocyclopropane-1-carboxylate. During naturalsenescence of carnation flowers, abscisic acid (ABA)was accumulated in the pistil and petals 2 days beforethe onset of ethylene production in the flower, andthe ABA content remained elevated until the onset ofethylene production. Application of exogenousABA to cut flowers from the cut stem end caused arapid increase in the ABA content in flower tissuesand promoted ethylene production in the flowers. These results were in agreement with the previousproposal that ABA plays a crucial role in theinduction of ethylene production during natural senescence incarnation flowers. DPSS preventedthe accumulation of ABA in both the pistil and petals,suggesting that DPSS exerted its inhibitory action onethylene production in naturally-senescing carnationflowers through the effect on the ABA-related process.  相似文献   

17.
Pollination and stigma wounding: same response, different signal?   总被引:2,自引:1,他引:1  
In Petunia hybrida flowers, both pollination and stigma woundinginduced a transient Increase in ethylene production and hastenedcorolla senescence. Ethylene production by different flowerparts was measured in situ using laser photoacoustic (LPA) spectroscopy.In pollinated flowers, ethylene was exclusively produced bythe stigma/style region whereas wounding of the stigma Inducedethylene production both by the stigma/style region and by theremaining flower parts. In aminoethoxyvinylglycine (AVG)-treatedflowers, subsequent treatment of the unwounded stigma with 1-aminocyclopropane-1-carboxylicacid (ACC) induced ethylene production exclusively by the stigma/styleregion whereas treatment of a previously wounded stigma withACC induced a simultaneous increase in ethylene production bythe stigma/style region and the remaining flower parts. Theseresults suggest that following stigma wounding, either ACC orethylene is involved in inter-organ communication. Followingpollination, the signal is apparently not directly related toethylene. In vivo ACC oxidase activity of most flower parts, includingthe gynoecium, was higher in light than in dark. Light or darkdid not influence the relative contributions of stigma/styleand remaining flower parts to the total pollination, woundingor ACC-induced ethylene production, indicating that ACC is nottranslocated. Both in excised styles and intact flowers, radiolabelledACC and its analogue -aminoisobutyric acid (AIB), applied eitherto an intact or wounded stigma, were largely immobile confirmingthat ACC is not likely to play a role in inter-organ signalling. The results collectively suggest that following stigma wounding,translocation of ethylene may be the signal responsible forinitiation of corolla senescence; following pollination thesignal is not directly related to ethylene. Key words: 1-Aminocyclopropane-1-carboxylic acid (ACC), ethylene, flower senescence, Petunia hybrida, pollination, stigma wounding  相似文献   

18.
19.
Petunia corollas wilt and abscise between one and two weeksafter detachment when maintained in distilled water in vialsat 18 °C. The onset of wilting is brought forward substantiallyby the application of 1-aminocyclopropane-1-carboxylic acid(ACC) either to the vial solution or to the stigmatic surface.Both pollination and stigma removal also shorten the time tothe onset of wilting, colour change and to abscission. In thecase of stigma removal, the life span of the corolla is shortestwhen the treatment is made at the time of flower detachment(day 0), whereas pollination has the greatest effect if it occurson day 1. Stigma damage still has an effect on corolla senescenceeven when stigma and style are removed, as long as they havebeen left in place for a few hours after treatment. Evidencefrom several experiments shows that a 17 h period is sufficientfor the full effect to be shown, and that probably there aresome effects on the corolla even if the damaged stigma is onlyleft in position for 3–6 h. Treatments which advance corolladeath (to day 3) also advance the peak of ethylene productionby the pistil (to day 1) and the corolla (to day 2). The useof silver thiosulphate (STS) overcomes all manipulative andchemical treatments used, and greatly extends vase life. Theextension occurs even when STS application is delayed for 24h, i.e. after the peak of ethylene production by the pistiland after any senescence signal has arrived at the corolla.In this case, however, the time to first morphological changeis largely unaffected, but the STS greatly extends the timeperiod between first morphological change and corolla death.The evidence suggests that early symptoms of senescence e.g.colour change and slight loss of turgor, do not automaticallylead to corolla abscission. Petunia hybrida, abscission, ACC, STS, pollination, flower senescence, ethylene  相似文献   

20.
We have examined whether octanoic acid (OA) one of the short chain saturated fatty acids (SCSFA), increases ethylene response in the following three ethylene-mediated processes: a) hypocotyl growth in darkness; b) formation of new flowers; c) flower abscission. These processes were examined in the presence or absence of exogenous ethylene in Arabidopsis wild type (WT) and in the ethylene-insensitive mutants, etr1-3 and ein2-1 and in the ethylene over-producer mutant eto1-1. Our results show that OA decreased hypocotyl length of WT in the absence or presence of exogenous ethylene, apparently showing that OA acts via augmentation of ethylene action. However, the hypocotyl growth inhibition could not be ascribed to increased ethylene sensitivity since application of inhibitors of ethylene synthesis (aminoethoxyvinylglycine; AVG) or action (1-methylcyclopropene;1-MCP) to WT seedlings did not prevent specifically the OA-induced growth inhibition. Also, OA inhibited hypocotyl growth in the mutants etr1-3 and ein2-1 in a similar pattern to that obtained in WT. On the other hand, OA had no effect on flower formation neither in WT, etr1-3 and eto1-1, in which ethylene reduced flower formation, nor in the ein2-1 mutant, in which ethylene had no effect. OA also did not increase flower abscission in WT or in the mutants etr1-3 and ein2-1 neither in the absence nor in the presence of ethylene. However, OA has augmented flower abscission in the mutant eto1-1 only in the absence of exogenous ethylene. This result might indicate that the effect of OA on eto1-1 is specific to this mutant and is not due to general deleterious effects inflicted by OA. Taken together, our results show that in general OA does not augment ethylene response in Arabidopsis, but it might affect ethylene action in flower abscission of the ethylene-overproducer mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号