首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zooplankton produce hydrodynamic disturbances during swimmingand feeding that enlarge their perceptive volume. From the standpointof both prey and predators, fluid disturbances increase theprobability that an organism is detected, identified and reactedto within appropriate time and space scales. Morphology andkinematics dictate the magnitude, symmetry and attenuation ofdisturbances in the fluid medium. Therefore, fluid disturbancesmay be species and age (size) specific. Normal and high-speedvideo microscopy was used to study flow-field generation byfree-swimming and tethered bivalve larvae. These organisms swimand feed using many highly coordinated and symmetrically distributedappendages (i.e. cilia). Larvae tethered in flow at variousfree stream velocities (U0), simulating swimming activity, inducedparticle trajectories approximately parallel to the organism'sdorso-ventral axis. Velocity (v) and acceleration (a) were symmetricalin the transverse plane and asymmetrical in the vertical plane.Greatest velocity magnitudes ({small tilde}7, 3 and 6 mm s)occurred dorsal to the velum and attenuated with source distance(r) as 1/r, 1/r1.9 and 1/r2.9 at 10 s U0 =, 3.1 and 6.4mm s–1, respectively. For a larva in flow, but with velumretracted, simulating sinking, velocity attenuated at Mr towardsthe organism. Mean velocity gradients were on the order of 3,8 and 10 s–1 for swimming, sinking and hovering larvae,respectively. The high-frequency (22 Hz) component of particlevelocity past free-swimming larvae was due to beat frequencyof the velar cilia. This attenuated rapidly with r leaving onlylow-frequency (1–3 Hz) disturbances 0.1 mm beyond thetips of the cilia. Comparisons of the kinetic energy dissipationrate for turbulence in coastal waters with the kinetic energyof laminar flow fields implied possible dominance of the flowfield of hovering, but not swimming, larvae to at least threebody diameters from the organism (–1 mm). These differencesin flow fields have important implications for larval survival.The perceptive volume of a hovering larva will be 40-fold greaterthan that of a swimming or sinking larva. However, a hoveringlarva U also more likely to be detected by a potential predatorthat uses mechanosensory organs to locate prey.  相似文献   

2.
The cues that trigger infection of fish by parasitic copepodsare largely unknown. We show that copepodids of the parasiticcopepod Lepeophtheirus salmonus respond to uniform, linear accelerations,which are similar to those found in front of a swimming fish.Copepodid responses to vibrations at 1, 3, 5 and 10 Hz frequencywere filmed and analysed. The animals were stimulated in a completelywater-filled, clear perspex chamber, which was suspended likea swing in four wires from a steel frame. The chamber was movedby a vibrator which was fed amplified signals from a sine waveoscillator. On stimulation, copepodids responded by executingswimming bursts of 1–3 s duration. There was no apparentpreferred swimming direction. Sensitivity was highest at 3 Hz,with a threshold value of 5 x 10–3 m s–2 (rms).At 1 Hz the threshold was <6 dB higher, and sensitivity wasmarkedly reduced at 10 Hz, where the threshold was 1.8 x 10–1m s–2 rms. These results indicate that the copepodidsmay react to the near-field accelerations produced within centimetresof a swimming fish. Acceleration sensitivity may therefore bea cue that triggers high-speed swimming and subsequent infestationof the host. If this ability is present in holoplanktonic copepods,it may facilitate detection and escape from predatory fish.  相似文献   

3.
Phytoplankton data obtained during six summer Polish expeditionsto the Antarctic Peninsula area, are compared with concurrentlyrecorded data on water column stabilities and krill abundance.The results show that flagellates (1.5–20 µm) arenumerically dominant over diatoms in the areas of deep verticalmixing and/or extensive krill concentrations. Of 102 stationsdominated by flagellates, 85 (83.3%) are located in a well mixedwater column (>100 m) and correspond to a mean krill densityof 15–346 t Nm–2. In the same areas, estimated flagellatecarbon biomass exceeds diatom carbon. On the other hand, ofthe 40 stations dominated by diatoms, 36 (90%) are located inareas of increased water column stability (upper mixed layerof 10–50 m) and correspond to a low mean krill biomassof 0.34–4.6 t Nm–2. Positive correlations of flagellateto diatom (F:D) cell number ratios with the depth of the uppermixed layer suggest light limitation of diatom growth and anincreased sinking rate of diatoms relative to flagellates inthe areas of deep vertical mixing. The relationship of the F:Dratio with krill abundance suggests that krill prefer feedingon diatoms and are less efficient in grazing particles of thesize of microflagellates (<20 µm). Flagellates exceeddiatoms in an unstable water column when the phytoplankton populationsare low; both algal groups increase in numbers with growingstability. The results provide field evidence that deep verticalmixing and krill grazing create conditions for the dominanceof flagellates over diatoms. Both factors acting together arelikely to suppress diatom blooms in the Antarctic.  相似文献   

4.
A study into the photophysiology, growth and migration of Ceratiumhirundinella in Chaffey Reservoir in subtropical northern NewSouth Wales, Australia, revealed that a proportion of cellsformed subsurface accumulations at depths that optimized lightintensity (212–552 µmol photons m–2 s–1)for photosynthesis and cell growth. At high incident irradiance,Ceratium migrated downwards from the near-surface waters, avoidinghigh-light-induced, slow-recovering non-photochemical quenchingof photosystem II. Overnight deepening of the surface mixedlayer by convective cooling produced homogeneous distributionsof Ceratium with a significant proportion of the populationbelow the depth where light saturation of photosynthesis occurred.Ceratium migrated towards the surface from suboptimal lightintensities, at a velocity of 1.6–2.7 x 10–4 m s–1.Subsurface accumulations occurred under a variety of turbulenceintensities; however, accumulation was significantly reducedwhen the turbulent velocity scale in the mixed layer was >5x 10–3 m s–1, beyond which turbulent diffusion dominatedadvection by swimming. The formation of subsurface accumulationswith increased computed water column integral photosynthesisby 35% compared to a uniform cell distribution.  相似文献   

5.
The vertical distribution and swimming behaviour of Sergia lucenswere investigated by means of underwater photography. Duringthe day the species was abundant from 3 to 7 m above the bottomon the upper continental slope at depths from 210 to 360 m.No shrimp were observed closer than 0.5 m above the bottom.The maximum concentration observed was 6.1 individuals m–3.It is speculated that in many areas on the continental slopesand rises, the density of zooplankton and micronekton is muchhigher near the bottom in the day than in the overlying midwater,and that this may provide a concentrated pelagic food for predatorsclose to the seafloor.  相似文献   

6.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

7.
A new high-pressure flowmeter(HPFM)is described which is capableof rapid water-flow measurements. The HPFM permits dynamic determinationof hydraulic conductance of roots, Kr, and can be used in tehlaboratory or field. The base of a root is connected to theHPFM and water is perfused into the root system opposite tothe normal direction of flow during trnaspiration. The perfusionpressure is changed at a constant rate of 3–7 kPa s–1while measuring the flow into the root every 2–4 s. Theslope of the plot of flow versus applied pressure is Kr. This paper describes the HPFM, presnents the theory of dynamicflow measurements, discusses sources of error, presnets evidencethat dynamic measurements of Kr in Ficus maclellandi (and sixother tropical species from Panama) yield the correct result,and demonstrates the use of the method under field conditionsin Panama on Cecropia obtusifolia and Palicourea guianensis. Key words: High-pressure flowmeter, root and shoot hydraulic conductance, Ficus maclellandi, Cecropia obtusifolia, Palicourea guianensis  相似文献   

8.
为了掌握对虾游动发声规律及其信息的利用可能,文章以南美白对虾(Litopenaeus vannamei)为对象研究了不同游动行为的发声信号特征。首先,在实验室黑暗条件下利用短时光源刺激南美白对虾,采集两种规格(小:4—6 cm;大:10—11 cm)对虾的快速游动发声信号,并分析得出:小规格对虾的主峰值频率约为250 Hz,并有次主峰频率约425 Hz;大规格对虾有约70 Hz主峰频率与约15 Hz的次主峰频率。其次,确定了游动行为中甩尾弹射的发声信号及其特征,其中心频率及频带范围均与快速游动发声信号的特征有明显差别。最后,对比养殖现场环境的水下声音信息发现:快速游动发声与背景噪声频域特征类似,部分信号被覆盖;对虾弹射发声信号可以清晰辨别,虽与实验室相比该信号的能量集中频率、频率主峰及次主峰频率更低且频率范围要更小,但其频谱及时频的信号特点与实验室信号有一定的关联性(持续时间均约为0.01s、能量的频率分布均集中于2—3 kHz)。因此,对虾在游动中的弹射发声信号可作为养殖中监测对虾行为的生物声学信息,有助于以声学信号监测对虾行为异常和判断生长状况的应用开发。  相似文献   

9.
In search of means to reduce the by-catch of juvenile flatfish in the shrimp fishery, vibrations and changes in current velocity caused by shrimp trawls were investigated in the field and in the laboratory. Buried as well as emerged shrimps (Crangon crangon) exhibit tailflips 5–10 cm before being touched by the rollers of a shrimp gear approaching them at a speed of 0.5 m·sec−1, as was revealed by slow motion video recordings in aquaria under artificial light. Hence, the signal effective in triggering escape must be attenuated strongly with increasing distance. Sediment vibration, commonly assumed to be an important signal in triggering escape of shrimps, was found to decrease by a factor 100·m−1. Signals from the rollers of a commercial shrimp gear in operation (towing speed 1 m·sec−1) were directly recorded with an accelerometer. Their frequency ranged from 50 to 500 Hz and reached an acceleration of 40 m·sec−2 on soft bottom or up to 100 m·sec−2 on hard substrate. Accelerometers, which had been buried right at the surface of a tidal sand flat during low tide, produced only one sharp signal of 100 Hz with an acceleration of 24 m·sec−2, when a shrimp gear swept them on the submerged tidal flats. However, in aquaria short sinusoidal signals (<5 m·sec−2; 20 to 300 Hz) made buried shrimps and flatfish (Pleuronectes platessa, Solea solea, Microstomus kitt) hide rather than flee. The vibrations recorded directly at the rollers and the underlying jolting movements of the rollers induce corresponding pulses in the water surrounding the rollers in a layer of approximately 10–15 cm. Similar water displacement of high acceleration was experimentally produced by a spring loaded transparent lucite piston (7 cm in diameter) fitted to an accelerometer. Accelerating this piston (12–116 m·sec−2, 50–200 Hz range) from 5 cm above towards the shrimp produced escape responses in up to 94% of the tests. Arthropods are known to perceive medium displacement rather than pressure. Hence, strong and rapidly rising water currents caused by the rollers rather than sediment vibration are assumed to mainly trigger the escape reaction, which makesCrangon accessible to the gear.  相似文献   

10.
The investigation of successive steps involved in the infectionprocess of the marine diatoms Coscinodiscus granii and Coscuwdiscuswailesii by the host-specific parasitoid nanoflagellate (PNF)Pirsonia diadenw showed that flagellates reacted chemokJinokineticallywith changes of swimming pattern to the presence of a host diatom.Chemosensory stimulation appeared to induce readiness for infection,whereas attachment and penetration of the diatom cell wall wasinduced by a mechanosensory response to morphological featureson the diatom frustules. The mean swimming speed of P.diademaflagellates decreased during their infective lifetime of 3 daysfrom an average of 78 µm s–1 to 51 µm s–1while the frequency of small loops in the swimming pattern increasedfrom 0.8 to 6.3 loops min–1. At high Cgranii densities,an epidemic was delayed. It is suggested that this could becaused by overlapping gradients of extracellular material releasedby the diatoms which impaired the sensing of spatial gradientsby PNF and, therefore, the location of hosts.  相似文献   

11.
Trains of 20-ms-duration pulses of pheromone were deliveredat rates of 1–33 Hz to antennal preparations of malesof Bombyx mori and Lymantria dispar, two moth species with bipectinateantennae. Resolution of rapidly pulsed plumes of pheromone wasnot compromised by a complex antennal morphology or by moderatechanges in wind speed (25–50 cm/s). Fourier analysis ofthe electroantennograms resolved the temporal structure of thesignal at frequencies up to 25 Hz for B. mori and up to 5 Hzfor L. dispar. The ability of these sensory structures to identifythe original (unchanged) frequency of the pulse train is particularlynoteworthy because air is slowed by about an order of magnitudeas it passes through bipectinate antennae. Although an unchangingfrequency in slowed airflow may be counterintuitive, this flowpattern, and its effects on odorant patch shape and spacing,is explained from fluid mechanical principles (i.e., the principleof continuity). An unchanging frequency suggests that as deceleratingair passes through a bipectinate antenna, the slowed patchesof odorant are stretched, thinned, and brought closer togetherby the same factor with which they are slowed.  相似文献   

12.
The growth of heterotrophic nanoflagellates (HNF) in mesotrophicLake Constance was measured in situ during a 13 month period.Experiments were conducted with 10 µm pre-filtered lakewater incubated in diffusion chambers at 3 m water depth atthe sampling location for 24 h. Growth rates were calculatedfrom changes in cell numbers occurring during the period ofincubation. Growth rates of all dominant taxa showed pronouncedseasonal variation (–0.13 to 1.76 day–1 and weregenerally highest in summer at high water temperatures. In situgrowth rates were well below maximum growth rates known forthe respective and similar species from laboratory experiments.While water temperature was a key parameter positively relatedto the growth of all HNF species, the effect of various potentialfood items was taxon specific and less clear. Bacterial abundancewas equally important as temperature for growth in the smallbactenvorous Spumella sp., but was insignificant for growthrates of the larger omnivorous Kathablepharis sp. In Spuniellasp., 84% of the observed seasonal variation of its growth ratecould be explained by temperature and bacterial food supply.Based on these results, a multiple linear regression equationwith temperature and bacterial concentration as dependent variableswas calculated for the growth rate of Spumella. Taxon-specificproduction rates were derived from growth rates and averagebiomass of these two species, and compared to total HNF productionestimated from previously measured community growth rates andbiomass in Lake Constance. Production peaks of Spumella sp.and Kathablepharis sp. alternated seasonally. Total HINF productionranged from –0.01 to 10 mg C m–3 day–1. Theaverage seasonal production varied between 1.4 and 33 mg C m–3day–1 over 6 consecutive years. These small protozoa thuscontribute a substantial amount to total zooplankton productionin Lake Constance.  相似文献   

13.
The three-dimensional flow field around a free-swimming copepodin steady motion was studiedtheoretically. This study was basedon coupling the Navier–Stokes equations with the dynamicequations for an idealized body of a copepod. To allow analyticalsolutions to the flow field, three simplifications were made:(a) to simulate the effect of the beating movement of the cephalicappendages, a force-field was added to the Navier–Stokesequations, (b) to linearize the problem, Stokes flow was used,and (c) to simplify the morphologies of the copepods, a sphericalbody shape was assumed. Analytical solutions were derived forfive steady motions: (1) hovering, (2) sinking, (3) upwardsswimming, (4) backwards swimming and (5) forwards swimming.The results show that thegeometry of the flow field around afreely swimming copepod varies significantly with the differentswimming behaviours. When a copepod hovers in the water, orswims very slowly, it generates a wide, cone-shaped flow field.In contrast, when a copepod sinks, or swims fast, the flow geometryis not cone-shaped, but cylindrical, narrow and long. Theseresults are consistent with published observations on live copepods.It is shown that the differences in the flow geometry with thedifferent swimming behaviours are due to the relative importancebetween the two factors in generating the flow field: the copepod'sswimming motion and the requirement to counterbalance the copepod'sexcess weight. The results also highlight the importance ofconsidering freely swimming copepods as self-propelled ratherthan as towed bodies. ‘Self-propelled’ means a freelyswimming copepod must gain thrust from the surrounding waterin order to counterbalance the drag force by water and its excessweight. Regardless of swimming behaviours and velocities, thefar-field velocity field decays to that of the velocity fieldgenerated by a point force of magnitude equal to the copepod'sexcess weight in an infinite domain. On the other hand, usingthe towed body model yields a flow field with much differentfar- and near-field flow characteristics. Hence, the towed bodymodel is inherently unable to reproduce fundamental characteristicsof the flow field around a freely swimming copepod.  相似文献   

14.
Cortical Bundles in the Persistent, Photosynthetic Stems of Cacti   总被引:2,自引:2,他引:0  
We examined 62 species in 45 genera of the cactus subfamilyCactoideae; all had collateral cortical bundles that permeatedthe broad, water-storing inner cortex and extended to the baseof the outer, photosynthetic palisade cortex. Mean distancebetween cortical bundles was 0.75 mm, similar to the mean spacing(0.74 mm) of veins in leaves of Pereskia, a genus of relictleaf-bearing cacti. In 16 species, both young and extremelyold stem cortex was available for study: in all of these, olderbundles had larger amounts of phloem than did younger bundles,indicating that phloem had been produced for many years. Inten species, older bundles also had more xylem than youngerbundles. In two genera (Rhipsalis and Selenicereus) there werecaps of primary phloem fibres, and in a single species (Pilosocereusmortensenii) cortical bundle xylem contained libriform fibres.All cortical bundle tracheary elements were narrow (radius range,0.91–8.2 µm; mode, 1.8–2.7 µm), similarto Pereskia leaf vein elements (radius range, 1.8–2.7µm); this was much narrower than stem wood vessels (radiusrange, 10–42 um; mode, 23–28 µm). Longitudinalconduction of water and nutrients probably occurs predominantlyin stem wood, with cortical bundles maintaining the broad, voluminouscortex, the outer part of which is the plant's photosynthetictissue and the inner part of which stores water and starch.The cortex of the Cactordeae contains numerous leaflike characters;homeotic genes may be involved in its morphogenesis. Cactaceae, cortical bundles, homeotic, xylem, phloem, evolution  相似文献   

15.
Neural activity was recorded extracellularly at the base ofthe first antenna in 15 marine copepods. Controlled mechanicalstimuli were delivered with a vibrator driven by a waveformgenerator. Many species exhibited responses characterized bya large number of small spikes, while others were characterizedby the presence of a small number of large units. Two bay species,Labidocera madurae and Acartia fossae, exhibited large unitsthat could be easily distinguished from the background activityof smaller units. In these species, the antennal receptors firedshort latency (>5 ms) trains of one to several impulses inresponse to a brief mechanical stimulus and sustained trainsto a prolonged sinusoidal stimulus. They were extremely sensitiveto small displacements and sensitivity increased with stimulusfrequency. The receptors responded to stimuli between 40 and1000 Hz and receptors required displacement velocities of 20µm s–1 or more to fire. Displacements as small as10 nm were capable of triggering spikes. With an increase inthe amplitude of the displacement, a decrease in the latencyand an increase in the number of units recruited and/or firingfrequency was recorded. Phase-locking to oscillatory stimuliwas observed over a frequency range of 80–500 Hz. Neuralactivity increased in response to bending of individual setae.Setae appear innervated and structurally constrained to movementsin specific directions. These experiments suggest that (i) somecopepod setal receptors may be more nearly velocity detectorsthan purely displacement sensors, (ii) they may be capable ofsensing closely spaced stimuli, (iii) the patterns of responsemay code for intensity and duration of the stimulus, and (iv)receptors may be capable of supplying directional information.  相似文献   

16.
The heterotrophic dinoflagellate Noctiluca scintillans has anegligible swimming ability and feeds predominantly on immobileprey. How, then, does it encounter prey? Noctiluca scintillansis positively buoyant and, therefore, we hypothesized that itintercepts prey particles during ascent and/or that microscaleshear brings it into contact with prey. Noctiluca scintillanshas a specific carbon content 1–2 orders of magnitudeless than that typical for protists and, thus, an inflated volume.It also has a density slightly less than that of the ambientwater and therefore ascends at high velocities (-1 m h–1).In stagnant water, clearance rates of latex spheres (5–80µm) increased approximately with prey particle size squared.This scaling is consistent with N.scintillans being an interceptionfeeder. However, absolute clearance rates were substantiallylower than those predicted by modeling N.scintillans both asa spherical and as a cylindrical collector. The latter modelassumes that prey particles are collected on the string of mucusthat may form at the tip of the tentacle. Feeding, growth andprey selection experiments all demonstrated that diatoms arecleared at substantially higher rates than latex beads and otherphytoplankters, particularly dinoflagellates. We propose thatdiatoms stick more efficiently than latex beads to the mucusof N.scintillans and that dinoflagellates reduce fatal contactbehaviorally. We conclude that N.scintillans is an interceptionfeeder and that the high ascent velocity accounts for encounterswith prey. However, the flow field around the cell-mucus complexis too complicated to be described accurately by simple geometricmodels. Fluid shear (0.7–1.8 s–1 had a negativeimpact on feeding rates, which were much less than predictedby models. Noctiluca scintillans can survive starvation forlong periods (>3 weeks), it can grow at low concentrationsof prey (-15 µg C l–1), but growth saturates onlyat very high prey concentrations of 500–1000 µgC l–1 or more. We demonstrate how the functional biologyof N.scintillans is consistent with its spatial and seasonaldistribution, which is characterized by persistence in the plankton,blooms in association with high concentrations of diatoms, andsurface accumulation during quiescent periods or exponentialdecline in abundance with depth during periods of turbulentmixing.  相似文献   

17.
Dinoflagellate cyst production at a coastal Mediterranean site   总被引:7,自引:0,他引:7  
To assess the diversity and seasonality of dinoflagellate cystproduction, surface sediment and trap samples were studied inthe Gulf of Naples (Mediterranean Sea). A total of 59 differentcyst morphotypes were recorded. At the stations within the 70m isobath, sediment assemblages were dominated by calcareousPeridiniales (66–79%), while at the deepest stations non-calcareousPeri-diniales attained the highest percentages (40–49%).The sediment trap sampling, carried out fortnightly over twoannual cycles, revealed high production rates (up to 1.7 x 106cysts m–2 day–1) from spring to late autumn of bothyears, with a distinct seasonal production pattern. Althoughrather similar in species composition, the total cyst flux differedmarkedly between the 2 years (1.26 and 0.55 x 108 cysts m–2year–1, respectively). Species-specific production patternswere observed: some species formed cysts over several months,others in restricted periods of the year. Cyst-forming speciesconstituted a small part of the planktonic dinoflagellate populationsrecorded in the area. A coupling between the trap material andsurface water plankton was observed for calcareous Peridiniales.This sampling approach allowed the detection of some speciesnever recorded before in the gulf, including two potentiallytoxic species: Alexandrium andersoni and Gymnodinium catenatum-likespecies.  相似文献   

18.
Measurements of adult Antarctic krill (Euphausia superba) gutcontents, evacuation and egestion rates, as well as digestiveefficiency, were carried out during February-March 1994 in thevicin ity of South Georgia to estimate in situ daily ration.These were combined with acoustically derived biomass data tocalculate the grazing impact of Antarctic krill and its contributionto the carbon flux in the region. Individual levels of gut pigmentconcentrations and evacuation rates ranged from 27 to 1831 ngchlorophyll a-eq. ind.–1 and from 0.133 to 0.424 h–1,respectively. Losses of pigment fluor escence during digestionwere very high, ranging from 58 to 98% of the total pigmentdigested. Daily carbon consumption estimated using the gut fluorescencemethod varied from 0.234 to 0.931 mg C ind.–1 day–1(or 0.4–1.7% of body carbon), compared to {small tilde}2.73mg C ind.–1 day–1 (or {small tilde}5% of body carbon)using the faecal pellet production data. The 3-fold higher dailyration estimated using egestion rate data may be explained bypredation on micro-and mesozooplankton. Maximum krill grazingimpact ranged from 0.4 to 1.9% of the total phytoplankton stockor from 10 to 59% of the total daily primary production. However,grazing impact on the microphytoplankton (>20 µm) wassubstantially higher, at times exceeding 100% of the daily microphytoplanktonproduction. It is suggested that to meet its energetic demands,kriil must consume a substantial proportion of heterotrophiccarbon. 3Present address Zoology Department, University of Fort Hare,P/Bag X1314, Alice, 5700, South Africa  相似文献   

19.
The response of individual Cryptomonas cells to continuous lightwas recorded using infrared video-micrography. Swimming directionsand temporal shifts in swimming direction of each cell weremeasured. White light of 0.1–1 W m–2 elicited apositive phototactic orientation, but did not induce any photophobicresponse. Light of 100 W m–2 induced a photophobic responseat the onset of actinic irradiation, but did not induce positivephototactic orientation. No correlation between positive phototacticorientation and photophobic response was found in this species.The direction toward the light source was defined as 0°,and the direction away from the source as 180°. Within 2s after the onset of lateral monochromatic light of 570 nm at0.1 W m–2, cells which were swimming in a direction ofless than 120° predominantly shifted their course towardthe light source. Cells swimming in directions of larger than120° shifted their course as randomly as those in the dark.Thus, for phototactic orientation, the cells must perceive thelight from their anterior side. (Received July 29, 1985; Accepted November 4, 1985)  相似文献   

20.
Billions of songbirds migrate between continents each year,but we have yet to obtain enough information on in-flight physiologyand energetics to fully understand the migratory behavior ofany one species. New World Catharus thrushes are common nocturnalmigrants amenable to biotelemetry, allowing us to measure physiologicalparameters during migratory flight in the wild. Here, we reviewwork by the authors on Catharus thrush in-flight physiologyduring spring migration in continental North America and presentnew data on individual variation in energy use during migratoryflight. Previous work demonstrated that (1) a number of simplebehavioral rules are sufficient to explain the initiation ofindividual migratory flights made by Catharus thrushes, (2)the thrushes used a magnetic compass to orient during the nightrather than celestial cues and that they calibrated this magneticcompass each day using cues associated with the setting sun,(3) in total, Catharus thrushes used approximately twice asmuch energy during stopovers than they used during migratoryflight, and (4) thrushes may use more energy when thermoregulatingon cold days than on days when they make short migratory flights.Recently, we built upon this work and used newly-developed transmittersto measure heart rate, wingbeat frequency and respiration rateof free-flying Swainson's Thrushes (C. ustulatus). We founda large amount of between-individual variation in average heartrate after ascent (range 12.06–14.81 Hz, mean ±SD, 13.48 ± 0.75, n = 10), average wingbeat frequencyafter ascent (10.25–11.75 Hz, 10.82 ± 0.49, n =10), and the difference between the two variables (1.5–3.84Hz, 2.53 ± 0.76, n = 8). Both heart rate and wingbeatfrequency were significantly higher during ascent than laterin the flight. We propose biotelemetry as a means to understandenergetic trade-offs and decisions during natural migratoryflight in songbirds. To further our knowledge of intercontinentalsongbird migration and the connectivity between wintering andbreeding sites, we outline plans for a satellite-based globaltracking system for <1 g transmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号