首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— –A method is described by which inorganic phosphate may be extracted from brain when bone fragments are present. Inorganic phosphate is extracted into 80% methanol and this does not hydrolyse phosphate esters of brain or dissolve bone. The inorganic phosphate content of brain was 217 μmol/g in both fed and 24 h starved rats.  相似文献   

2.
目前,磷酸钙骨水泥因其具有优良的生物性能已被广泛用于骨组织工程,但它自固化后只是形成具有微孔和封闭气孔的致密块体,其孔径尺寸和连通性仍远达不到骨组织工程的最佳要求.本研究采用α-TCP为原料,以过氧化氢作为发泡剂,使用模具插针法制得一种具有大孔径和中空管的多孔磷酸钙骨水泥材料.孔径达到900μm,孔隙率为50.67%,抗折强度达到5.84MPa.通过扫描电镜照片观察和分析微观结构.结果表明,通过这种方法可以制得具有理想孔径尺寸和连通性的多孔磷酸钙骨水泥,可以说,这为制备用于骨组织工程的多孔磷酸钙骨水泥创造了一种新的方法.  相似文献   

3.
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.  相似文献   

4.
5.
A method for obtaining a uniform, dense precipitate of lanthanum nitrate to delineate extracellular space is described. Improvement of the previous technique is achieved by phosphate precipitation of lanthanum in the tissue carried out at low temperature. This method has been successfully applied to bone marrow.  相似文献   

6.
自固化磷酸钙人工骨修复小儿局部骨缺损的临床应用   总被引:8,自引:0,他引:8  
目的:研讨自固化磷酸钙人工骨(Calcium Phosphate Cement,CPC)填充修复小儿局部骨缺损的临床意义,方法:选用CPC修复小儿骨缺损18例,年龄最小8个月,最大12岁,平均8岁,骨缺损部位:肱骨9例,胫骨6例,胫骨3例,病因,单纯性骨囊肿8例,骨纤维异常增生症5例,动脉瘤样骨囊肿4例,嗜酸性肉芽肿1例,骨缺损大小,最大7cm,最小2cm,平均5cm,CPC填充方式:单纯粉末7例,粉末+松质骨粒6例,粉末+条形骨块5例。CPC初步固化时间,最短15分钟,最长30分钟,平均20分钟,随访时间:13-27个月,平均18.5个月。结果:全组18例应用CPC后未见明显局部和全身不良反应。手术前后血PH值钙磷代谢无异常改变。X线片显示:CPC与宿主骨接触紧密,无脱落,术后3个月出现降解,新生骨形成。结论:CPC安全无毒,使用方便,易塑形,生物相容性好,能在体内降解,可以替代自体骨材料在小儿局部骨缺损应用。  相似文献   

7.
The most widely accepted hypothesis to account for maturational changes in the X-ray diffraction characteristics of bone mineral has been the 'amorphous calcium phosphate theory', which postulates that an initial amorphous calcium phosphate solid phase is deposited that gradually converts to poorly crystalline hydroxyapatite. Our studies of bone mineral of different ages by X-ray radial distribution function analysis and 31P n.m.r. have conclusively demonstrated that a solid phase of amorphous calcium phosphate does not exist in bone in any significant amount. 31P n.m.r. studies have detected the presence of acid phosphate groups in a brushite-like configuration. Phosphoproteins containing O-phosphoserine and O-phosphothreonine have been isolated from bone matrix and characterized. Tissue and cell culture have established that they are synthesized in bone, most likely by the osteoblasts. Physiochemical and pathophysiological studies support the thesis that the mineral and organic phases of bone and other vertebrate mineralized tissues are linked by the phosphomonester bonds of O-phosphoserine and O-phosphothreonine, which are constituents of both the structural organic matrix and the inorganic calcium phosphate crystals.  相似文献   

8.
The aim of this study was to create a new porous calcium phosphate implant for use as a synthetic bone graft substitute. Porous bioceramic was fabricated using a foam-casting method. By using polyurethane foam and a slurry containing hydroxyapatite-dicalcium phosphate powder, water, and additives, a highly porous structure (66 ± 5%) was created. The porous specimens possess an elastic modulus of 330 ± 32 MPa and a compressive strength of 10.3 ± 1.7 MPa. The X-ray diffraction patterns show hydroxyapatite and beta-pyrophosphate phases after sintering. A rabbit model was developed to evaluate the compressive strength and elastic modulus of cancellous bone defects treated with these porous synthetic implants. The compressive mechanical properties became weaker until the second month post implantation. After the second month, these properties increased slightly and remained higher than control values. New bone formed on the outside surface and on the macropore walls of the specimens, as osteoids and osteoclasts were evident two months postoperatively. Considering these properties, these synthetic porous calcium phosphate implants could be applicable as cancellous bone substitutes.  相似文献   

9.
Excessive intake of dietary phosphate without the company of calcium causes serum parathyroid hormone (s-PTH) concentration to rise. We investigated the effect of a modest but prolonged increase in dietary intake of inorganic phosphate on the bone quantitative factors of mature male rats. Twenty Wistar rats were divided into two groups and fed a high-phosphate diet (1.2% phosphate) or a control diet (0.6% phosphate) for 8 weeks. In the beginning and at the end of the study period, femur and lumbar bone mineral density (BMD), bone mineral content and area were measured using DXA, s-PTH was analyzed from the blood sample, and after sacrifice, right femur was cut loose and processed into paraffin cuts. Bone diameter, inner diameter and cortical width was measured from the hematoxylin- and eosin-dyed femur cuts. Tibias were degraded and calcium and phosphate content was analyzed by inductively coupled plasma-mass spectrometer. Femoral BMD increased significantly more in the control group than in the phosphate group (P=.005). Lumbar BMD values decreased in both groups, and the fall was greater in the control group (P=.007). The phosphate group had significantly higher s-PTH values (P=.0135). Femoral histomorphometric values or tibial mineral contents did not differ between groups. In conclusion, increase in dietary phosphate intake caused s-PTH to rise and hindered mineral deposition into cortical bone, leading to lower BMD. The effect on trabecular bone was opposing as mineral loss was less in the lumbar spine of phosphate group animals. These results are in concurrence with the data stating that skeletal response to PTH is complex and site dependent.  相似文献   

10.
The kidney is a key player of phosphate balance, it determines serum phosphate levels by coupling phosphate reabsorption in the renal proximal tubule, calcitriol synthesis and consequently intestinal phosphate absorption. The identification of fibroblast growth factor 23 (FGF23) as a hormone regulating phosphate and calcitriol metabolism has unveiled the mechanisms that coordinate these renal proximal tubule functions. A bone–kidney axis has emerged that controls bone mineralization. Animal model studies have improved our understanding of phosphate homeostasis and revealed the role of the protein Klotho, which is mandatory to FGF23 action. In this review we detail FGF23 and Klotho implications in physiology and in genetic or acquired disorders. Phosphate ion is involved in vascular and soft tissue calcification and is important for cell proliferation. Disorders of FGF23–Klotho axis alter life-span and the survival in some cancers.  相似文献   

11.
SYNOPSIS. A method is described for cultivation of large numbers of Spirostomum ambiguum , calcified intracellularly with hydroxyapatite (bone salt deposits). The structure and activity of living animals at various stages of calcification is described and also illustrated with unstained and silver impregnated ciliates. A suitable modification of von Kossa's method for localization of insoluble phosphate deposits is given.  相似文献   

12.
The present studies show for the first time that demineralized bone re-calcifies rapidly when incubated at 37 degrees C in rat serum: re-calcification can be demonstrated by Alizarin Red and von Kossa stains, by depletion of serum calcium, and by uptake of calcium and phosphate by bone matrix. Re-calcification is specific for the type I collagen matrix structures that were calcified in the original bone, with no evidence for calcification in periosteum or cartilage. Re-calcification ceases when the amount of calcium and phosphate introduced into the matrix is comparable to that present in the original bone prior to demineralization, and the re-calcified bone is palpably hard. Re-calcified bone mineral is comparable to the original bone mineral in calcium to phosphate ratio and in Fourier transform infrared and x-ray diffraction spectra. The serum activity responsible for re-calcification is sufficiently potent that the addition of only 1.5% serum to Dulbecco's modified Eagle's medium causes bone re-calcification. This putative serum calcification factor has an apparent molecular mass of 55-150 kDa and is inactivated by trypsin or chymotrypsin. The serum calcification factor must act on bone for 12 h before re-calcification can be detected by Alizarin Red or von Kossa staining and before the subsequent growth of calcification will occur in the absence of serum. The speed, matrix-type specificity, and extent of the serum-induced re-calcification of demineralized bone suggest that the serum calcification factor identified in these studies may participate in the normal calcification of bone.  相似文献   

13.
14.
Phosphate plays a centrol role in many of the basic processes essential to the cell and organism. In particular, skeletal mineralisation is dependent on the appropriate regulation of phosphate in the body, and any disturbances in phosphate homeostasis can have severe repercussions on the integrity of bone. The kidney regulates the serum levels of phosphate by tubular mechanisms which are not fully understood. Furthermore, the processes involved in regulating renal tubular phosphate reabsorption are complex, and involve a large number of factors. It is not surprising therefore that defects in renal phosphate handling result in a failure of bone mineralisation. There are three well characterised conditions which are associated with renal tubulopathies resulting in a phosphate leak, with consequent bone disease. Two are familial, hypophosphataemic rickets (HYP), and hereditary hypophosphataemic rickets with hypercalciuria (HHRH). The third is acquired via a tumour, oncogenic hypophosphataemic osteomalacia (OHO), and may well have relevance to the inherited hypophosphataemias. Recent advances in molecular genetics are permitting the identification of genes involved in human diseases from their chromosomal location. These approaches are now being applied to the analysis of the hypophosphataemias. The isolation of the genes responsible for the renal tubulopathies will be an important achievement. Ultimately this will help to increase our understanding of the mechanisms involved in the control of phosphate handling in the body.  相似文献   

15.
The parathyroid glands have received relatively little attentionwith regard to their impact on the internal milieu in amphibians.Present information, however, clearly indicates that distributionof mineral in frog tissues and body fluids is under hormonalregulation; further modifications are imposed by season andtemperature. Under conditions of cold acclimation or duringwinter normal amphibian bone shows minimal rates of carbohydrateutilization: simultaneously, phosphate is conserved by reducedexcretion and increased incorporation in tissue. Exogenous parathyroidhormone, injected under these conditions when endogenous titersmay be low due to glandular degeneration, reverses these effects,and phosphate is lost in a hyperphosphaturic urine. During summeror periods of warm acclimation, hormone promotes incorporationof phosphate in tissues, and increases rates of carbohydratemetabolism in bone; citric acid, which may act in solubilizingbone mineral, is elevated in the bone. Concurrently, pre-existingsulfated mucopolysaccharides of "old" bone may be degraded,while epiphyseal zones enlarge and may exhibit accelerated orabnormal elaboration of sulfated components of cartilage and/orosteoid matrix.  相似文献   

16.
17.
《IRBM》2021,42(5):302-312
Scaffolds for bone tissue applications have been an outstanding alternative to repair and regenerate bone tissue defects caused by traumas or illness. There are many methods available to fabricate porous scaffold such as solvent casting, gas bubble, phase separation, electrospinning, particle-leaching, among others. The particle-leaching technique has shown advantages in bone tissue regeneration applications, the main benefit of this technique is related to the porogen particle size and the porogen content in the manufacture of scaffolds. Tricalcium phosphate is one calcium phosphate that presented appropriated characteristic to be used for bone tissue engineering due to the chemical properties similar to the human bones. Scaffolds of tricalcium phosphate β phase were made using sugar particles. The porogen was varied in amounts of 50, 60 and 70 wt.% of two commercial sugars with the remainder of the composition made up of tricalcium phosphate powders. The pore sizes in all the scaffolds were in the range of 90 to 600 μm with an irregular pore morphology and the porosity was in the range of 63 to 77%.  相似文献   

18.
Tricalcium phosphate (Synthos) is a bioceramic material which can be carved with a scalpel and wired into place as a bone graft would be. The process of bone replacement of the prosthesis begins with an ingrowth of cellular loose connective tissue, which is replaced later by dense connective tissue. Around the periphery of this dense fibrous connective tissue, osteoid tissue becomes evident and on later specimens this mixture seems to be converted to bone--which at first is in the form of spicules but later takes on the characteristics of lamellar bone (with tricalcium phosphate particles seen within its lacunae). The progressive replacement occurs in a circumferential pattern, but most heavily at the bone-prosthesis interface. Although the periosteum is beneficial, we do not feel that the major source of bone formation is as the soft tissue or subperiosteal area. The replacement of the tricalcium phosphate prosthesis is slower than we originally thought, or than reported by others. We have noted pockets of tricalcium phosphate, incompletely replaced, in dogs up to 18 months after implantation. We believe this may be related to the larger sized prostheses we used (2 x 2 cm blocks) with, therefore, longer distances that the ingrowth and calcification had to traverse.  相似文献   

19.
Phosphate is required for terminal differentiation of hypertrophic chondrocytes during postnatal growth plate maturation. In vitro models of chondrocyte differentiation demonstrate that 7 mM phosphate, a concentration analogous to that of the late gestational fetus, activates the mitochondrial apoptotic pathway in hypertrophic chondrocytes. This raises the question as to whether extracellular phosphate modulates chondrocyte differentiation and apoptosis during embryonic endochondral bone formation. To address this question, we performed investigations in the mouse metatarsal culture model that recapitulates in vivo bone development. Metatarsals were cultured for 4, 8, and 12 days with 1.25 and 7 mM phosphate. Metatarsals cultured with 7 mM phosphate showed a decrease in proliferation compared to those cultured in 1.25 mM phosphate. This decrease in proliferation was accompanied by an early enhancement in hypertrophic chondrocyte differentiation, associated with an increase in FGF18 expression. By 8 days in culture, an increase caspase‐9 activation and apoptosis of hypertrophic chondrocytes was observed in the metatarsals cultured in 7 mM phosphate. Immunohistochemical analyses of embryonic bones demonstrated activation of caspase‐9 in hypertrophic chondrocytes, associated with vascular invasion. Thus, these investigations demonstrate that phosphate promotes chondrocyte differentiation during embryonic development and implicate a physiological role for phosphate activation of the mitochondrial apoptotic pathway during embryonic endochondral bone formation. J. Cell. Biochem. 108: 668–674, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Metabolic bone disease occurring in renal or intestinal disorders has been reviewed with particular reference to etiological factors.Hyperparathyroidism is seen as a recurring cycle of renal damage—hyperphosphatemia—hypocalcemia—parathyroid stimulation—mobilization of bone calcium and phosphate—renal tubular phosphate rejection. In intestinal cases, the initial stimulus is presumably hypocalcemia.Osteomalacia is seen as resulting from phosphate depletion for the following reasons:1. Experimentally, rickets results from dietary phosphate restriction in rats.2. Such rickets is not prevented by the presence of normally adequate amounts of dietary vitamin D, and may therefore be termed “resistant” in the clinical sense.3. Osteomalacia or rickets in intestinal malabsorption and renal tubular disorders is associated with hypophosphatemia due to excessive fecal or urinary loss.4. Renal tubular rickets has been healed by oral phosphate loading in some studies.5. Acidosis may induce osteomalacic changes, experimentally and clinically (for example, in uretero-sigmoidostomy). Reversal of systemic acidosis with oral bicarbonate has resulted in phosphate retention and a rising serum phosphate in one such case.6. Preliminary data from analysis of full-thickness bone biopsy in two osteomalacic patients shows a significant reduction in calcium and phosphate content.7. Despite the hyperphosphatemia of azotemic renal failure, over-all phosphate depletion may be present in this situation also due to: • Diminished dietary phosphate in low protein diets • Nausea and vomiting • Occasional diarrhea • The use of oral phosphatebinding antacids • Perpetuation of urinary phosphate losses by reduction in proportion of tubular reabsorbed phosphate (secondary hyperparathyroidism) and possibly high filtered load per nephron • Repeated losses of phosphate to bath fluid during dialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号