首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氧载体强化氧传递促进法夫酵母虾青素的合成*   总被引:3,自引:1,他引:2  
法夫酵母生物合成虾青素是强好氧发酵过程,溶氧水平直接影响细胞虾青素的产率。本文对虾青素的氧载体强化氧传递双液相发酵进行了研究。实验结果表明,添加豆油(作为氧载体)可提高法夫酵母发酵时的溶氧水平,促进虾青素的合成:添加豆油 0.5-5.0%(w/v),虾青素产量随豆油添加量逐步提高,最高时达到2.98mg/L,对照组虾青素产率为2.50mg/L。并证明产量的提高是单位质量细胞的虾青素合成效率提高的结果。摇瓶培养时转速的高低不同,对豆油的最适添加量存在影响。较高摇瓶转速有利于豆油在培养基中分散,从而利于强化氧的传递。  相似文献   

2.
In the presence of NADPH, cytochrome c stimulates approximately a 200-fold increase in the production of singlet oxygen by the bovine adrenodoxin reductase-adrenodoxin system. The formation of singlet oxygen, which was monitored by the attending chemiluminescence, was markedly inhibited by the addition of superoxide dismutase or 1,4-diazabicyclo[2.2.2]octane. The adrenal system, in the presence of cytochrome c, peroxidized adrenal mitochondrial lipids, as indicated by the formation of malondialdehyde. This oxidation is also inhibited by the addition of dismutase and 1,4-diazabicyclo[2.2.2]octane.  相似文献   

3.
为了探究虎斑乌贼胚胎不同发育时期的耗氧率变化和几种生态因子对胚胎发育过程耗氧率的影响,试验采用封闭静水装置,对不同发育时期(12期)的耗氧率进行测定,并研究不同盐度(21、24、27、30、33)、温度(18、21、24、27、30 ℃)和pH(7.0、7.5、8.0、8.5、9.0)对胚胎4个主要发育时期(受精卵期、原肠胚期、器官形成期和内骨骼形成期)耗氧率的影响.结果表明: 胚胎各个发育时期耗氧率不同,随着发育的进程而增大,受精卵期为0.082 mg·(100 eggs)-1·h-1,而到原肠胚期的耗氧率显著升高,为0.279 mg·(100 eggs)-1·h-1,到孵化期时,耗氧率达到1.367 mg·(100 eggs)-1·h-1;盐度对器官形成期和内骨骼形成期的耗氧率均有显著影响(P<0.05),对受精卵期和原肠胚期影响不显著(P>0.05),当盐度为30时,4个发育时期耗氧率均达到最大值,分别为0.082、0.200、0.768和1.301 mg·(100 eggs)-1·h-1;温度对原肠胚期、器官形成期和内骨骼形成期的耗氧率有显著影响(P<0.05),对受精卵期无显著性影响(P>0.05),在27 ℃时,胚胎4个发育时期均达到最大值,分别为0.082、0.286、0.806和1.338 mg·(100 eggs)-1·h-1;而pH对4个发育时期的耗氧率均无显著性影响(P>0.05),受精卵期在pH 8.0时达到最大值,为0.116 mg·(100 eggs)-1·h-1,原肠胚期、器官形成期、内骨骼形成期在pH 8.5时达到最大值,分别为0.281 、0.799和1.130 mg·(100 eggs)-1·h-1.  相似文献   

4.
《Free radical research》2013,47(1):751-757
The prevention of cancer by agents in our diet has led to the concept that oxygen radicals are a necessary component of a variety of human cancers including breast, colon and prostatic cancer. These cancers are putatively promoted by estradiol, bile acids and androgens. Epidemiological studies have shown that these cancers are suppressed in vegetarian populations. Vegetable components that may be responsible for this cancer prevention are Vitamin A, retinoids and protease inhibitors (PIS). These agents have been shown to suppress the formation of hydrogen peroxide in promoter-induced neutrophils. They also have been shown to block two-stage carcinogenesis and breast cancer when fed to animals. PIS also suppress experimentally-induced colon cancer and spontaneous liver cancer. Moreover, a new series of cancer-preventive agents, Sarcophytols (isolated by Fujiki and co-workers), are capable of suppressing two-stage carcinogenesis, breast and colon cancers in rodents when given in low concentrations. Sarcophytols were also active suppressors of H2O2 formation of 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced neutrophils. These observations point to an essential role of oxygen radicals in carcinogenesis. Suppression of the oxygen radical response of neutrophils in relation to cancer preventive agents is a facile assay of these important substances. The mechanism of action of oxygen radicals in promoting carcinogenesis is a multiple one. including: (1) activation of oncogenes, (2) modification of DNA bases, and (3) formation of single-strand breaks leading to poly(ADP)ribose polymerase activation.  相似文献   

5.
The activation of molecular oxygen by alkaline hemin (ferriprotoporphyrin IX) has been studied. In the presence of reductant nicotineamide adenine dinucleotide (NADH) or nicotineamide adenine dinucleotide phosphate (NADPH) and organic substrate, aniline, hemin activates oxygen to the hydroperoxide anion (HO2?) and subsequently mediates insertion of active oxygen into the benzene ring of the substrate to form p-aminophenol, with a high degree of regiospecificity. Oxygen activation does not occur in the absence of aniline. Stoichiometry of the reaction indicates that two electrons are required per molecule of oxygen activated or atom of oxygen inserted into the substrate aromatic ring system. Direct measurements of H2O2 and of the pKa for maximum rate of p-aminophenol formation (11.7 ± 0.1) indicate participation of the hydroperoxide anion as the active oxygen species in the rate-determining step of the insertion reaction. Powerful scavengers of the hydroxyl radical (OH′) have little effect on the formation of H2O2 or p-aminophenol by the system. Superoxide dismutase (10?7 mol dm?3) inhibited both p-aminophenol and H2O2 formation, when added to the system immediately prior to initiation of the reaction. Studies involving N-phenylhydroxylamine indicate that aromatic ring hydroxylation is occurring directly and not by rearrangement of an N-hydroxylated intermediate. Implications of hemin-mediated hydroxylation reactions for those of enzymatic mixed function oxidase activity are discussed.  相似文献   

6.
Formation of excited species such as singlet molecular oxygen during redox cycling (one-electron reduction-oxidation) was detected by low-level chemiluminescence emitted from perfused rat liver and isolated hepatocytes supplemented with the quinone, menadione (vitamin K3). Chemiluminescence was augmented when the two-electron reduction of the quinone catalyzed by NAD(P)H:quinone reductase was inhibited by dicoumarol, thus underlining the protective function of this enzyme also known as DT-diaphorase. Interference with NADPH supply by inhibition of energy-linked transhydrogenase by rhein or of mitochondrial electron transfer by antimycin A led to a depression in the level of photoemission. Unexpectedly, glutathione depletion of the liver led to a lowering of chemiluminescence elicited by menadione, whereas conversely the depletion of glutathione led to increased chemiluminescence levels when a hydroperoxide was added instead of the quinone. As the GSH conjugate of menadione, 2-methyl-3-glutathionyl-1,4-naphthoquinone, studied with microsomes, was shown also to be capable of redox cycling, we conclude that menadione-induced chemiluminescence of the perfused rat liver does not only arise from menadione itself but from the menadione-GSH conjugate as well. Therefore, the conjugation of the quinone with glutathione is not in itself of protective nature and does not abolish semiquinone formation. A biologically useful aspect of conjugate formation resides in the facilitation of biliary elimination from the liver. Nonenzymatic formation of the conjugate from menadione and GSH in vitro was found to be accompanied by the formation of aggressive oxygen species.  相似文献   

7.
The present state of knowledge of the formation of the Compounds I of peroxidases and catalases is discussed in terms of the restrictions which must be placed upon a valid mechanism. It is likely that all Compounds I contain one oxygen atom bound to the heme-iron as in the Compound I of chloroperoxidase. Thus the formation of Compound I, obtained after molecular hydrogen peroxide and the enzyme diffuse together, involves a minimum of two bond ruptures and the formation of two new bonds. Yet this amazing reaction proceeds with an activation energy equal to or less than that for the fluidity of water. This result can only be accounted for by including at least one reversible step. Since Compound I formation requires the formation of an “inner sphere” complex, the presence or absence of water in the sixth co-ordination position of the heme-iron is of crucial importance. A comparison of the rates of ligand binding with the rate of Compound I formation indicate that the inner sphere complex leading to Compound I formation is formed by an excellent nucleophile, probably the peroxide anion, formed by a proton transfer from hydrogen peroxide. This proton cannot equilibrate with the bulk solvent. A proton derived from the active site would appear to be added to the hydroxide ion which permits a molecule of water to depart upon oxygen atom addition (or substitution) to (or at) the heme-iron. It is tentatively suggested that Compound I of catalase has a single active site per subunit molecule and that Compound I of peroxidase normally has two reactive sites.  相似文献   

8.
H A Sasame  M R Boyd 《Life sciences》1979,24(12):1091-1096
The addition of nitrofurantoin to aerobic incubation mixtures containing rat lung microsomes strongly enhanced the generation of adrenochrome from epinephrine. Adrenochrome formation in this system was blocked by superoxide dismutase, but not by catalase. Hydrogen peroxide production was also strongly enhanced by nitrofurantoin in these preparations; superoxide dismutase did not significantly alter the amount of H2O2 measured, but no H2O2 was detected in incubation mixtures in the presence of catalase. Nitrofurantoin enhanced the oxidation of NADPH in lung microsomal suspensions under aerobic conditions; the enhancement was unaffected by catalase but was partially prevented by superoxide dismutase. Neither adrenochrome formation nor H2O2 production were enhanced by nitrofurantoin under anaerobic (N2) conditions, but NADPH oxidation in the presence of nitrofurantoin was greater under anaerobic conditions than under aerobic conditions. These results are consistent with the view that the redox cycling of nitrofurantoin in lung microsomes in the presence of oxygen results in the consumption of NADPH and the production of activated oxygen species, emphasizing some in vitro metabolic similarities with the lung-toxic herbicide, paraquat.  相似文献   

9.
《Free radical research》2013,47(1):645-652
Super oxide is produced during the authorization of hemoglobin. Authorization of hemoglobin is, however, facilitated under hypoxic conditions where hemoglobin is only partially oxygenated.

We have recently found that the erythrocyte superoxide dismutase does not fully react with the additional superoxide produced under hypoxic conditions. A leakage of superoxide from the erythrocyte is thus detected, resulting in a potential source for oxyradical damage to tissues.

Detailed studies on intact erythrocytes as a function of oxygen pressure have now been performed. These studies further delineate the hypoxic stress on erythrocytes and the mechanism for the leakage of superoxide. By centrifugation of samples under various oxygen pressures it was possible to show an enhanced rate of lysis at reduced oxygen pressures with a maximum rate in the region of 25 mm Hg. At much lower pressures where the hemoglobin is mostly deoxygenated the rate of lysis was dramatically decreased with almost no lysis detected even after three days. Lysis is shown to be associated with superoxide membrane damage. The formation of superoxide which does not react with endogenous SOD reaches a maximum value at much lower pressures where most of the hemoglobin is deoxygenated. It is suggested that the leakage at low pressure is associated with the formation of superoxide by oxidation of hemoglobin associated with the membrane.  相似文献   

10.
对长白落叶松成片枯死的原因进行了多学科综合研究.结果表明,长白落叶松的成片枯死与病虫害没有直接关系,由于林地高位沼泽的形成,导致根部缺氧呼吸受阻,是落叶松大片枯死的直接诱因.  相似文献   

11.
N-Hydroxymethylpentamethylmelamine (HMPMM) was identified by HPLC and by GLC-MS after derivatization, as a metabolite of the anticancer drug hexamethylmelamine (HMM) in incubation mixtures with fortified mouse liver 9000 × g and microsomal preparations. HMPMM formation was dependent on the presence of NADPH and oxygen. N-demethylated metabolites were also found. HMPMM displays appreciable chemical stability and 29% was recovered after 60 min incubation in buffer. HMPMM constituted more than 50% of total HMM metabolites in 30 min incubations. The known chemical reactivity of carbinolamines means that HMPMM could be involved in the pharmacological or toxic effects of HMM.  相似文献   

12.
Enhancement in oxygen uptake by high-cell-density cultivations has been achieved previously by expression of the bacterial hemoglobin gene from Vitreoscilla. The Vitreoscilla hemoglobin (VHb) gene was expressed in the yeast Yarrowia lipolytica to study the effect of expression in this commercially important yeast. The expression of VHb in this yeast was found to enhance growth, contrary to reported observations in wild-type Saccharomyces cerevisiae in which there was no significant growth enhancement. VHb-expressing Y. lipolytica exhibited higher specific growth rate, enhanced oxygen uptake rate, and higher respiratory activity. We report the beneficial effects of VHb expression on growth under microaerobic as well as under nonlimiting dissolved oxygen conditions. Earlier studies in Y. lipolytica have demonstrated inhibition of mycelia formation by respiratory inhibitors and poor nitrogen source, conditions poor for growth. VHb(+) Y. lipolytica cells were more efficient at forming mycelia, indicating better utilization of available oxygen as compared with the VHb(-) cells. Expression of VHb was also found to increase the levels of enzyme ribonuclease secreted into the medium, a property that may be beneficial for producing heterologous proteins in Y. lipolytica.  相似文献   

13.
Hypoxia can stimulate the development of a suberized exodermis in aquatic plants; however, its influence on this aspect of terrestrial root development is sparsely documented. To determine the effects of hypoxia on maize (Zea mays cv. Seneca Horizon) roots, seedlings were grown in vermiculite (VERM), aerated hydroponics (AER), stagnant hydroponics with agar (STAG), or aerated hydroponics with agar (AERAG). The endo- and exodermis were examined for wall modifications. Lateral root emergence and aerenchyma formation were documented qualitatively. The endodermal Casparian band formation was unaffected by treatment. Endodermal and exodermal suberin lamella formation was earliest and most extensive in VERM. Suberization, especially in the exodermis of aerated treatments, was depressed in all hydroponic media. In comparison with AER, STAG exodermal lamellae were increased, but endodermal lamellae were decreased. Since the suberized exodermis forms a barrier to radial oxygen loss from roots to the medium, its stimulation in STAG roots (which also developed extensive aerenchyma) would help retain oxygen in the root. The reduction of endodermal lamellae should facilitate oxygen diffusion into the stele. Clearly, the response to environmental conditions is variable within individual cortical cell layers. Additionally, the observed patterns of lamellae, aerenchyma and lateral root development indicate a tight radial co-ordination of root development.  相似文献   

14.
Prostanoid formation in human umbilical vessels perfused in vitro was assessed at different oxygen tensions. At an atmosphere of 5% oxygen the production rate of prostacyclin (measured as 6-keto-PGF1 alpha) was higher, while those of thromboxane A2 (measured as TXB2), PGE2 and PGF2 alpha were lower than with 20%, 50% and 95% oxygen. The stimulatory effect of angiotensin II on prostanoid production was found to be independent on the prevailing oxygen tension. Vascular formation of prostanoids thus seems to be at least partially affected by the ambient oxygen tension. Though altered oxygen tension does not seem to affect angiotensin induced prostanoid formation, the action of other vasoactive agents influencing vascular formation of prostanoids may respond differently to hypoxia or hyperoxia.  相似文献   

15.
The carbon skeleton of the quinoline alkaloid graveoline is built up from the aromatic ring and probably the carboxylic group of anthranilic acid and the ring and the C-atoms 2′ and 3′ of a phenylpropane. The nitrogen atom of the alkaloid is derived from that of anthranilic acid. It seems that a benzoylacetic acid derivative which is formed from phenylalanine via cinnamic acids reacts with anthranilic acid with loss of its carboxylic group. The two oxygen atoms of the methylenedioxy group of graveoline are introduced by mixed function oxygenation. The value of the NIH-shift which occurs during this reaction shows that the oxygen in the p-position is introduced before that in the m-position. A monomethylated o-dihydroxy group seems to be the direct precursor of the methylenedioxy structure. The introduction of the oxygen atoms, the methylation and the formation of the methylenedioxy group can proceed at different stages in the pathway of graveoline biosynthesis.  相似文献   

16.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

17.
Ascorbate reacts with methemoglobin to produce reactive oxygen species, most probably hydroxyl radicals. The main features of this system are: a) disappearance of ascorbate; b) consumption of oxygen with an ascorbate/O2 stoichiometry of 2:1; c) requirement of unliganded heme iron; d) formation of H2O2. The proposed mechanism involves an ascorbate-mediated interconversion of methemoglobin and oxy-hemoglobin, resulting in the production of H2O2. This product is decomposed by hemoglobin to produce hydroxyl radicals according to a Fenton-like reaction in which ascorbate recycles methemoglobin to hemoglobin. Alternative pathways of formation and of decomposition of H2O2 in this system appear to play a minor role.  相似文献   

18.
Summary The influence of different states of oxygen and alkane substrate supply on the metabolism of Candida maltosa during cultivation on n-alkanes has been investigated. At sufficient oxygen and substrate supply a nearly equimolar ratio between the formation of biomass and alkane oxidation was observed. About 45% of the carbon source utilized was incorporated into the biomass. Strong oxygen limitation decreased protein formation and carbon incorporation into the biomass with a simultaneous increase in CO2 formation, whereas periodic changes of oxygen supply only caused a decrease in carbon incorporation into the biomass and an increase in CO2 formation. During cultivation in the presence of an inert hydrocarbon (pristane) it was found that carbon limitation and oxygen saturation diminished the formation of total and nitrogen-containing biomass, whereas carbon and oxygen limitation reduced the formation of total biomass.Offprint requests to: P. Riege  相似文献   

19.
The generation, occurrence and action of singlet oxygen in plant tissue is reviewed. Particular emphasis is placed upon its formation from triplet sensitizers and its reactivity with molecules of biological importance such as lipids and amino acids. The possibility of singlet oxygen generation in chloroplasts is discussed in relation to potential quenching systems such as carotenoid pigments, ascorbate and α-tocopherol. The problems associated with carotenoid diminution and some stress and herbicide treatment conditions are related to the possibility of damage by singlet oxygen. The action of a number of secondary plant substances, including quinones, furanocoumarins, polyacetylenes and thiophenes, as plant defence agents is discussed in relation to the photodynamic generation of singlet oxygen.  相似文献   

20.
The requirement of vitamin K-dependent carboxylation for oxygen was determined. Carboxylation was not detected at oxygen concentrations less than 0.05 mM or in the absence of vitamin K epoxide formation. Epoxide formation was detectable at 0.05 mM and was maximal at 0.10 mM O2. Carboxylation increased with oxygen concentrations over the range of 0.10 to 0.25 mM. At oxygen concentrations at which epoxide formation was maximal, the ratio of epoxide formation to carboxylated product was approx. 3.5:1. The data are consistent with the hypothesis that an oxygenated vitamin K intermediate is required for carboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号