首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler plays a pivotal role in the carbon pump and is known to exhibit significant morphological, genetic, and physiological diversity. In this study, we compared photosynthetic pigments and morphology of triplicate strains of Southern Ocean types A and B/C. The two morphotypes differed in width of coccolith distal shield elements (0.11–0.24 μm, type A; 0.06–0.12 μm, type B/C) and morphology of distal shield central area (grill of curved rods in type A; thin plain plate in type B/C) and showed differences in carotenoid composition. The mean 19′‐hexanoyloxyfucoxanthin (Hex):chl a ratio in type B/C was >1, whereas the type A ratio was <1. The Hex:fucoxanthin (fuc) ratio for type B/C was 11 times greater than that for type A, and the proportion of fuc in type A was 6 times higher than that in type B/C. The fuc derivative 4‐keto‐19′‐hexanoyloxyfucoxanthin (4‐keto‐hex) was present in type A but undetected in B/C. DNA sequencing of tufA distinguished morphotypes A, B/C (indistinguishable from B), and R, while little variation was observed within morphotypes. Thirty single nucleotide polymorphisms were identified in the 710 bp tufA sequence, of which 10 alleles were unique to B/C and B morphotypes, seven alleles were unique to type A, and six alleles were unique to type R. We propose that the morphologically, physiologically, and genetically distinct Southern Ocean type B/C sensu Young et al. (2003) be classified as E. huxleyi var. aurorae var. nov. S. S. Cook et Hallegr.  相似文献   

2.
Culture strains of Emiliania huxleyi (Lohmann 1902) Hay et al. 1967 were placed into two groups designated E. huxleyi type A and type B on the basis of coccolith morphology and immunological properties of the coccolith polysaccharide. We studied the distribution of these types in the North Atlantic region using an indirect immunofluorescence assay with antisera directed against the coccolith polysaccharide of E. huxleyi type A and type B and epifluorescence microscopy. In field samples taken in the Northeast Atlantic Ocean, E. huxleyi type A was found exclusively. In contrast, type B was dominant in the North Sea. Scanning electron microscopy of the samples revealed the same unequal distribution of the two types as found with the immunofluorescent-labelling assay.  相似文献   

3.
The calcite platelets of coccolithophores (Haptophyta), the coccoliths, are among the most elaborate biomineral structures. How these unicellular algae accomplish the complex morphogenesis of coccoliths is still largely unknown. It has long been proposed that the cytoskeleton plays a central role in shaping the growing coccoliths. Previous studies have indicated that disruption of the microtubule network led to defects in coccolith morphogenesis in Emiliania huxleyi and Coccolithus braarudii. Disruption of the actin network also led to defects in coccolith morphology in E. huxleyi, but its impact on coccolith morphology in C. braarudii was unclear, as coccolith secretion was largely inhibited under the conditions used. A more detailed examination of the role of actin and microtubule networks is therefore required to address the wider role of the cytoskeleton in coccolith morphogenesis. In this study, we have examined coccolith morphology in C. braarudii and Scyphosphaera apsteinii following treatment with the microtubule inhibitors vinblastine and colchicine (S. apsteinii only) and the actin inhibitor cytochalasin B. We found that all cytoskeleton inhibitors induced coccolith malformations, strongly suggesting that both microtubules and actin filaments are instrumental in morphogenesis. By demonstrating the requirement for the microtubule and actin networks in coccolith morphogenesis in diverse species, our results suggest that both of these cytoskeletal elements are likely to play conserved roles in defining coccolith morphology.  相似文献   

4.
The effects of changes in CO2 and pH on biomass productivity and carbon uptake of Pleurochrysis carterae and Emiliania huxleyi in open raceway ponds and a plate photobioreactor were studied. The pH of P. carterae cultures increased during day and decreased at night, whereas the pH of E. huxleyi cultures showed no significant diurnal changes. P. carterae coccolith production occurs during the dark period, whereas in E. huxleyi, coccolith production is mainly during the day. Addition of CO2 at constant pH (pH-stat) resulted in an increase in P. carterae biomass and coccolith productivity, while CO2 addition lowered E. huxleyi biomass and coccolith production. Neither of these algae could grow at less than pH 7.5. Species-specific diurnal pH and pCO2 variations could be indicative of significant differences in carbon uptake between these two species. While E. huxleyi has been suggested to be predominantly a bicarbonate user, our results indicate that P. carterae may be using CO2 as the main C source for photosynthesis and calcification.  相似文献   

5.
Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark‐field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small‐angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion‐by‐ion growth mechanisms. Using cryo‐preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well‐controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the “nuclear envelope junction”. The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope–endoplasmic reticulum Ca2+‐store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion‐by‐ion growth rather than by a nanoparticle accretion mechanism.  相似文献   

6.
Coccolithophores are a key functional phytoplankton group and produce minute calcite plates (coccoliths) in the sunlit layer of the pelagic ocean. Coccoliths significantly contribute to the sediment record since the Triassic and their geometry have been subject to palaeoceanographic and biological studies to retrieve information on past environmental conditions. Here, we present a comprehensive analysis of coccolith, coccosphere and cell volume data of the Southern Ocean Emiliania huxleyi ecotype A, subject to gradients of temperature, irradiance, carbonate chemistry and macronutrient limitation. All tested environmental drivers significantly affect coccosphere, coccolith and cell volume with driver‐specific sensitivities. However, a highly significant correlation emerged between cell and coccolith volume with Vcoccolith = 0.012 ± 0.001 * Vcell + 0.234 ± 0.066 (n = 23, r2 = .85, p < .0001, σest = 0.127), indicating a primary control of coccolith volume by physiological modulated changes in cell volume. We discuss the possible application of fossil coccolith volume as an indicator for cell volume/size and growth rate and, additionally, illustrate that macronutrient limitation of phosphorus and nitrogen has the predominant influence on coccolith volume in respect to other environmental drivers. Our results provide a solid basis for the application of coccolith volume and geometry as a palaeo‐proxy and shed light on the underlying physiological reasons, offering a valuable tool to investigate the fossil record of the coccolithophore E. huxleyi.  相似文献   

7.
A quantitative analysis was carried out on coccolith assemblages from two Pleistocene cores (K1 and K10) from the western Mediterranean. The distribution of selected coccolithophore species provides new paleoclimatic and paleoceano-graphic data. A continuous sequence from the top of Isotope Stage 5 to the Holocene was recorded. The reversal in dominance between Gephyrocapsa muellerae and Emiliania huxleyi was dated in both cores at ca. 73 ka. At about 47 ka, E. huxleyi shows a regular increase, whereas G. muellerae progressively decreases in abundance. During interglacial periods, high concentrations of coccoliths are observed, whereas in glacial times, coccoliths are more diluted and the percentage of reworked forms increases as a consequence of the higher terrigenous input. After taking careful account of the dilution factor, we conclude that the production of coccolithophores was higher during warm periods. Maxima in coccolith concentrations coincide with highstand episodes, probably as a result of the intensification of the Atlantic flux into the Mediterranean across the Gibraltar Strait. This intensification could have produced an increase in nutrient content in the surface Mediterranean waters. During cold periods, the western Mediterranean front underwent a reduction in activity, probably due to an increase in the saline and/or thermal gradients between the superficial waters, and intermediate waters in the Liguro Provençal basin.  相似文献   

8.
Temperature effect on growth, cell size, calcium uptake activity, coccolith production was studied in coccolith-producing haptophytes, Emiliania huxleyi (Lohmann) Hay & Mohler (strain EH2) and Gephyrocapsa oceanica Kamptner (strain GO1) (Coccolithophorales, Prymnesiophyceae). E. huxleyi grew at a wider temperature range (10°–25°C), while G. oceanica growth was limited to warmer temperatures (20°–25°C). Cell size was inversely correlated with temperature. At low temperature, the enlargement of chloroplasts and cells and the stimulation of coccolith production were morphologically confirmed under fluorescent and polarization microscopes, respectively. 45 Ca uptake by E. huxleyi at 10°C was greatly increased after a 5-day lag and exceeded that at 20°C. These results clearly showed that low temperature suppressed coccolithophorid growth but induced cell enlargement and as stimulated the intracellular calcification that produces coccoliths.  相似文献   

9.
10.
A seasonal morphological variability is observed in Emiliania huxleyi var. huxleyi specimens, collected from discrete water samples in the Aegean Sea. Biometric analyses reveal a consistent pattern of increase in the size of coccoliths and coccospheres, including the thickness of the inner tube elements (INT), in winter/spring time low sea surface temperature and moderate productivity samples when compared with summer time high temperature-low productivity samples. The small range of salinity change in the Aegean Sea and the absence of seasonal pattern in nutrient content do not support any association with the observed increase in E. huxleyi coccolith size. A relatively increased [HCO3-] content is observed during spring-time interval related with the increase in the coccolith size, however it remains unclear which parameter of the carbonate system causes the observed effects.  相似文献   

11.
Cells of Emiliania huxleyi grown on Eppley's medium enriched with dissolved inorganic carbon (DIC) developed multiple layers of coccoliths. The maximum diameter of cells grown in the presence of 13.2 mM DIC was 12.3 m, whereas that of cells grown in the presence of 1.5 mM DIC was 8.0 m. Although enrichment of Eppley's medium with DIC increased both coccolith production and cell growth, coccolith production was enhanced to a greater extent than cell growth. The enrichment of Eppley's medium with DIC was used to enhance production of coccolith particles by E. huxleyi. Repeated-batch culture, in which DIC, Ca2+, nitrate and phosphate concentrations in the medium were maintained by replacing the culture medium, was carried out in a closed photobioreactor. During repeated-batch culture, a maximum coccolith yield of 560 mg/l for 2 days and a maximum biomass yield of 810 mg/l for 2 days were achieved. Enrichment and maintenance of DIC is therefore an efficient method for the production of large quantities of coccoliths.  相似文献   

12.
The coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler was cultured in natural seawater with the addition of either the microtubule‐inhibitor colchicine, the actin‐inhibitor cytochalasin B, or the photosynthesis inhibitor 3‐(3,4 dichlorophenyl)‐1,1‐dimethyl‐urea (DCMU). Additionally, E. huxleyi was cultured at different light intensities and temperatures. Growth rate was monitored, and coccolith morphology analyzed. While every treatment affected growth rate, the percentage of malformed coccoliths increased with colchicine, cytochalasin B, and at higher than optimal temperature. These results represent the first experimental evidence for the role of microtubules and actin microfilaments in coccolith morphogenesis.  相似文献   

13.
Using primer pairs for seven previously described microsatellite loci and three newly characterized microsatellite loci from the coccolithophore Emiliania huxleyi (Lohm.) Hay and Mohler, we assessed genetic variation within this species. Analysis of microsatellite length variants (alleles) was conducted for 85 E. huxleyi isolates representative of different ocean basins. These results revealed high intraspecific genetic variability within the E. huxleyi species concept. Pairwise comparison of a 1992 Coastal Fjord group (FJ92) (n=41) and a North East Atlantic (NEA) group (n=21), using FST as an indicator of genetic differentiation, revealed moderate genetic differentiation (FST=0.09894; P=0; significance level=0.05). Gene flow between the FJ92 and NEA groups was estimated to be low, which is in agreement with the moderate levels of genetic differentiation revealed by the microsatellite data. A genetic assignment method that uses genotype likelihoods to draw inference about the groups to which individuals belong was tested. Using FJ92 and NEA as reference groups, we observed that all the E. huxleyi groups tested against the two reference groups were unrelated to them. On a global biogeographical scale, E. huxleyi populations appear to be highly genetically diverse. Our findings raise the question of whether such a high degree of intraspecific genetic diversity in coccolithophores translates into variability in ecological function.  相似文献   

14.
Action Spectrum of Coccolith Formation   总被引:1,自引:0,他引:1  
The action spectrum of coccolith formation in Coccolithus huxleyi was determined by measuring the uptake of carbon-14 in coccoliths in four-hour experiments as a function of light intensity at each of seven wavelengths. An action spectrum | of photosynthetic carbon assimilation was obtained at the same time. The coccolith action spectrum had peaks at wavelengths of about 440 nm and 670 nm. probably corresponding to the regions of maximum cellular absorption and carbon assimilation. However, blue light appeared to be relatively more efficient in coccolith formation than in carbon assimilation. The results suggest that light-dependent coccolith formation may be catalyzed by two photochemical reactions, one mediated by chloroplast pigments and the other by some pigment absorbing specifically in the blue part of the spectrum.  相似文献   

15.
On a global scale, morphological variability of the extant coccolithophorid Calcidiscus leptoporus (Murray and Blackman, 1898) Loeblich and Tappan was investigated in surface sediments and plankton samples and from an Early Pleistocene time-slice (1.8 Ma to 1.6 Ma). In the bivariate space coccolith diameter versus number of rays in the distal shield, Holocene samples follow a single, unimodal morphocline. Sample means of coccolith size and number of elements group in three clusters, I, II and III, which are of biogeographic significance. Clusters II and III coccoliths (mean coccolith size of 5.0 μm and 20.9 elements, and 6.6 μm and 25.6 elements, respectively) are found in a tropical belt extending from 11 °N to 17 °S with an annual minimum sea-surface temperature above 23.5 °C. Cluster I coccoliths (5.8 μm, 20.7 elements) are found in samples outside that belt. The distribution of coccoliths in the surface sediments is tentatively interpreted to be a result of mixing to a varying degree of at least three different morphotypes (‘small’, ‘intermediate’ and ‘large’), which were identified in the living plankton, and which are separated from each other at 5 μm and 8 μm mean coccolith diameter, respectively. A comparison of the surface sediments with the Early Pleistocene assemblages revealed that between 1.6 Ma and 1.8 Ma two morphoclines A and B existed, the first of which persisted until the Holocene in the form of C. leptoporus, while the second comprises only extinct morphotypes including Calcidiscus macintyrei as one end-member. During the Early Pleistocene morphocline A was more homogeneous and no clusters were evident.Morphocline B shows a clear bimodality with a separation of morphotypes at 9.5 μm. Our observations suggest that morphoclines are subsets within the total stratigraphical range of a single species, and represent the global variability of that species in a particular time interval. Morphotypes, which belong to a morphocline, represent the infra-specific variability of that species within the biogeographic and stratigraphic limits of that species.  相似文献   

16.
Summary Two methods were employed for measuring coccolith formation and photosynthesis in coccolithophorids. The first method was based on measurements of 14C radioactivity of cells on membrane filters before and after acid treatment. The second method involved a conversion of 14C in coccoliths or whole cells to BaCO3 prior to counting. It was observed that in determinations of photosynthetic (or total) 14C by the first method, the count rate produced by a given amount of the isotope was 30–40% lower in the non-motile and motile forms of Coccolithus pelagicus than in C. huxleyi. There was no similarly great discrepancy in determinations of coccolith 14C.Light-dependent coccolith formation was demonstrated in both forms of C. pelagicus. The non-motile form may deposit several times more carbon in its coccoliths than it assimilates photosynthetically. In the motile form, coccolith carbon amounts to less than 2% of photosynthetic carbon.  相似文献   

17.
The marine coccolithophorid Emiliania huxleyi is an important component of the marine carbon cycle because bloom development results in the export of calcium carbonate from the ocean surface to the abyss. Laboratory and field studies demonstrate significant biogeographical, ecological, physiological and morphological plasticity in E. huxleyi and suggest high underlying genetic variability. Here we describe seven polymorphic microsatellite loci from the E. huxleyi genome and their degree of polymorphism in clonal isolates of different geographical origin. Our results indicate a high degree of genetic diversity within E. huxleyi.  相似文献   

18.
Coccoliths of Emiliania huxleyi (Lohmann) Hay and Mohler, a unicellular calcifying alga, consist of calcite closely associated with an acidic, Ca2+-binding polysaccharide. This polysaccharide is thought to play a regulatory role in coccolith synthesis by interfering with CaCO3 crystallization. Here we show that the polysaccharides from three different strains, A 92, L and 92 D, all inhibit the precipitation of CaCO3 in vitro to the same extent. The monosaccharide compositions of the A 92 and L polysaccharide are similar. The 92 D material, however, deviates from the other two: it contains significantly lower amounts of methylated sugars and ribose, and elevated levels of rhamnose and galactose. It also contains antigenic determinants not detected in the A 92 and L polysaccharides. In contrast to the latter two macromolecules the 92 D polysaccharide migrates as two bands upon polyacrylamide gel electrophoresis, possibly resulting from complexing with small amounts of protein. The coccolith polysaccharide from L cells, cultured at an elevated growth rate, also migrates as two bands. This phenomenon is due to an increase in molecular size distribution. The results suggest that certain properties of the molecule may be subject to variation without interfering with its function.  相似文献   

19.
Marine calcifying eukaryotic phytoplankton (coccolithophores) is a major contributor to the pelagic production of CaCO3 and plays an important role in the biogeochemical cycles of C, Ca and other divalent cations present in the crystal structure of calcite. The geochemical signature of coccolithophore calcite is used as palaeoproxy to reconstruct past environmental conditions and to understand the underlying physiological mechanisms (vital effects) and precipitation kinetics. Here, we present the stable Sr isotope fractionation between seawater and calcite (Δ88/86Sr) of laboratory cultured coccolithophores in individual dependence of temperature and seawater carbonate chemistry. Coccolithophores were cultured within a temperature and a pCO2 range from 10 to 25°C and from 175 to 1,240 μatm, respectively. Both environmental drivers induced a significant linear increase in coccolith stable Sr isotope fractionation. The temperature correlation at constant pCO2 for Emiliania huxleyi and Coccolithus braarudii is expressed as Δ88/86Sr = ?7.611 × 10?3 T + 0.0061. The relation of Δ88/86Sr to pCO2 was tested in Emiliania huxleyi at 10 and 20°C and resulted in Δ88/86Sr = ?5.394 × 10?5 pCO2 – 0.0920 and Δ88/86Sr = ?5.742 × 10?5 pCO2 – 0.1351, respectively. No consistent relationship was found between coccolith Δ88/86Sr and cellular physiology impeding a direct application of fossil coccolith Δ88/86Sr as coccolithophore productivity proxy. An overall significant correlation was detected between the elemental distribution coefficient (DSr) and Δ88/86Sr similar to inorganic calcite with a physiologically induced offset. Our observations indicate (i) that temperature and pCO2 induce specific effects on coccolith Δ88/86Sr values and (ii) that strontium elemental ratios and stable isotope fractionation are mainly controlled by precipitation kinetics when embedded into the crystal lattice and subject to vital effects during the transmembrane transport from seawater to the site of calcification. These results provide an important step to develop a coccolith Δ88/86Sr palaeoproxy complementing the existing toolbox of palaeoceanography.  相似文献   

20.
Cells of Coccolithus huxleyi which fail to deposit CaCO3 and form coccoliths often occur as unwanted components in cultures used for studies of calcification. Non-calcified cells generally cannot be made to recalcify, but they can be removed from cultures by treatment at elevated pH or by a method based on faster sinking of calcified cells. Lowering the concentrations of nitrate, phosphate, or trace metals in the medium did not restore calcifying ability of non-calcified cells. However, addition of strontium did promote recalcification of decalcified Cricosphaera carterae grown under calcium limitation. Strontium seemed to promote coccolith attachment to cells rather than to affect calcium uptake or coccolith formation itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号