首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates the hypothesis that biological grazing refuges have an important role in plant-grazer interactions of grasslands with a long history of grazing. We assessed the hypothesis that clumps of the spiny cactus Opuntia polyacantha provide biological refuges from cattle grazing, affecting cover and seedhead production of associated vascular plants in the shortgrass steppe of the North America. The study was based on sampling inside and outside Opuntia clumps in eight long-term moderately grazed pastures established 60 yr ago and their respective ungrazed controls. Opuntia clumps provided a refuge for seedhead production of the dominant grass ( Bouteloua gracilis ) and for cover and seedhead production of many plant groups. Clumps were also a refuge for species sensitive to grazing (species that decrease with grazing) and barrel-cacti, but not for species preferred by cattle (species with greater proportion in the diet than in the field), exotics or weeds. Our results suggest that these effects were mainly through changes in the microenvironmental conditions resulting from protection effects, even though all potential microenvironmental effects could not be measured. Cacti promoted some negative effects on other plant groups, probably due to the space occupied by cladodes inside cactus clumps. The refuge effects observed at the group level did not translate into strong community level effects. Species diversity ( H' ) was greater in cactus clumps due to lower dominance rather than greater richness. The presence of Opuntia clumps increased landscape-scale diversity. This ecological role of Opuntia clumps as refuge from cattle grazing should be taken into consideration in management practices aimed at cactus eradication in order to increase forage availability for livestock. We discuss the potential role of plant community productivity and grazing history with regard to the importance of natural refuges in structuring grassland communities.  相似文献   

2.
The response of semiarid grasslands to small, non‐colonial herbivores has received little attention, focusing primarily on the effects of granivore assemblages on annual plant communities. We studied the long‐term effects of both small and large herbivores on vegetation structure and species diversity of shortgrass steppe, a perennial semiarid grassland considered marginal habitat for small mammalian herbivores. We hypothesized that 1) large generalist herbivores would affect more abundant species and proportions of litter‐bare ground‐vegetation cover through non‐selective herbivory, 2) small herbivores would affect less common species through selective but limited consumption, and 3) herbivore effects on plant richness would increase with increasing aboveground net primary production (ANPP). Plant community composition was assessed over a 14‐year period in pastures grazed at moderate intensities by cattle and in exclosures for large (cattle) and large‐plus‐small herbivores (additional exclusion of rabbits and rodents). Exclusion of large herbivores affected litter and bare ground and basal cover of abundant, common and uncommon species. Additional exclusion of small herbivores did not affect uncommon components of the plant community, but had indirect effects on abundant species, decreased the cover of the dominant grass Bouteloua gracilis and total vegetation, and increased litter and species diversity. There was no relationship between ANPP and the intensity of effects of either herbivore body size on richness. Exclusion of herbivores of both body sizes had complementary and additive effects which promoted changes in vegetation composition and physiognomy that were linked to increased abundance of tall and decreased abundance of short species. Our findings show that small mammalian herbivores had disproportionately large effects on plant communities relative to their small consumption of biomass. Even in small‐seeded perennial grasslands with a long history of intensive grazing by large herbivores, non‐colonial small mammalian herbivores should be recognized as an important driver of grassland structure and diversity.  相似文献   

3.
Pamela Graff  Martín R. Aguiar 《Oikos》2011,120(7):1023-1030
Since many arid ecosystems are overstocked with domestic herbivores, biotic stress could have a stronger influence in modulating the balance of species interactions than expected from the stress gradient hypothesis (SGH). Here we tested a priori predictions about the effect of grazing on species interactions and fine scale spatial structure of grasses in water‐limited ecosystems. We used detailed vegetation mapping and spatial analysis, and performed a field experiment where the direct and indirect components of positive interactions were disentangled to provide evidence of links between process and pattern. We found associational resistance (biotic refuge) to be the dominant process in grazing situations, while competition, instead of direct facilitation, seemed to govern grass spatial patterns when herbivore pressure was relaxed. These results suggest that facilitation between grasses in arid communities may be related to herbivory rather than nurse plant effects. Associational resistance tends to have the strongest effect on spatial aggregation of species at intermediate grazing pressure. Results suggest that contrary to SGH, this physical clustering of species decreased when grazing pressure reached their maximum levels. Positive associations remained significant only when palatability differences between neighbours is large, suggesting that managing stocking rate is a key factor determining the persistence of herbivory refuges. These refuges are potential foci to initiate population recovery of high quality forage species in arid degraded areas.  相似文献   

4.
Question: How does grazing intensity affect plant density, cover and species richness in an Patagonian arid ecosystem? Location: Monte steppe ecoregion, SW Argentina. Methods: I analysed the effect of grazing on plant density, cover and species richness using a stocking rate gradient within the same habitat. Six paddocks were used with stocking rates ranging between 0.002 – 0.038 livestock/ha. Plant density, species richness, plant cover and percentage of grazed branches were determined by sampling plots within each paddock. The percentage of grazed branches was used as an independent measurement of grazing intensity. Results: Higher stocking rates were related to lower plant density, species richness and plant cover. The paddock with the lowest grazing intensity had 86% more plants per unit area, 63% more plant cover and 48% higher species richness. The percentage of grazed branches and the quantity of dung increased with stocking rate. Conclusions: Introduced livestock seriously affect native vegetation in the Patagonian Monte. The damage observed in this xerophytic plant community suggests that plant adaptations to aridity do not provide an advantage to tolerate or avoid grazing by vertebrate herbivores in this region. Plant degradation in this arid environment is comparable to the degradation found in more humid ecosystems.  相似文献   

5.
《环境昆虫学报》2013,35(5):572-577
采用无底样框法对四子王旗荒漠草原不同放牧强度下的蝗虫群落进行了取样调查,比较了不同放牧强度下荒漠草原蝗虫群落的丰富度、多样性和均匀度指数及群落中蝗虫种类和数量随季节的动态变化,并对蝗虫种群分布与植物群落特征进行了相关性分析。结果表明,在不同放牧强度下蝗虫的群落结构及时间动态均存在一定差异,说明放牧活动对蝗虫群落结构有明显影响,其中,轻度放牧和重度放牧样地中蝗虫种群总数显著高于其他样地。不同种类的蝗虫群落与放牧强度之间关系表现复杂。  相似文献   

6.
Hart  Richard H. 《Plant Ecology》2001,155(1):111-118
Shortgrass steppe rangeland near Nunn, Colorado, USA, has been lightly,moderately, or heavily grazed by cattle, or protected from grazing inexclosures, for 55 years. Plant species biodiversity and evenness were greatestin lightly- and moderately-grazed pastures. Both pastures weredominated by the warm-season shortgrass Boutelouagracilis, but the cool-season midgrasses Pascopyrumsmithii and Stipa comata contributedsignificantly to biomass production on the lightly-grazed pasture, asthey did in the exclosures. Diversity was least in the exclosures, which werestrongly dominated by the cactus Opuntia polyacantha.Buchloë dactyloides, another warm-seasonshortgrass, and Bouteloua gracilis were co-dominantsunder heavy grazing, and diversity was intermediate. Plant community structureand diversity were controlled by selective grazing by cattle and soildisturbance by cattle and rodents. Shortgrass steppe moderately or heavilygrazed by cattle was similar to and probably as sustainable as steppe grazed formillenia by bison and other wild ungulates.  相似文献   

7.
Question: What are the plant population‐ and community‐level effects of removal of dominant plant species in the shortgrass steppe? Location: The Shortgrass Steppe Long‐Term Ecological Research site in northern Colorado, USA. Methods: We annually measured plant cover and density by species for 10 years after a one‐time aboveground removal of the dominant perennial grass, Bouteloua gracilis. Removal and control plots (3 m × 3 m) were within grazed and ungrazed locations to assess the influence of grazing on recovery dynamics. Our analyses examined plant species, functional type, and community responses to removal, paying special attention to the dynamics of subdominant and rare species. Results: Basal cover of B. gracilis increased by an average of 1% per year, but there was significantly less plant cover in treatment compared to control plots for 5 years following removal. In contrast to the lower cover in treatment plots, the plant density (number of plants m?2) of certain subdominant perennial grasses, herbaceous perennial and annual forbs, a dwarf shrub, and cactus increased after removal of the dominant species, with no major change in species richness (number of species per 1 m × 1 m) or diversity. Subdominant species were more similar between years than rare species, but dominant removal resulted in significantly lower similarity of the subdominant species in the short term and increased the similarity of rare species in the long term. Conclusions: Removal of B. gracilis, the dominant perennial grass in the shortgrass steppe, increased the absolute density of subdominant plants, but caused little compensation of plant cover by other plants in the community and changes in species diversity.  相似文献   

8.
Exotic grasses are widely established across the Southeastern United States for livestock forage, resulting in the structural and compositional simplification of grasslands. Replacing exotic forages with native warm‐season grasses (NWSG) could benefit insects due to increased complexity of plant structure and composition, but livestock grazing also may facilitate spread of remnant exotic grasses such as bermudagrass (Cynodon dactylon) by reducing height and coverage of NWSG. We investigated these relationships among 12 operational‐scale pastures (6.4–10.5 ha) in Mississippi, U.S.A., during May–July (2011–2012). We quantified changes in bermudagrass coverage from one treatment of grazed exotic forages and three treatments of recently established NWSG, including a grazed mixed NWSG polyculture, a grazed Indian grass (Sorghastrum nutans) monoculture to evaluate the effects of stand‐type richness among NWSG pastures, and a non‐grazed NWSG polyculture to evaluate the effects of grazing. We also assessed responses of two insect orders, Orthoptera and Hemiptera, to treatment and bermudagrass coverage. We estimated a 101–190% average increase in coverage of bermudagrass in grazed native grass pastures (NWSG polyculture and Indian grass monoculture), but not in non‐grazed NWSG, suggesting that grazing facilitated the spread of this grass. Composition of Orthopteran and Hemipteran communities was correlated with bermudagrass coverage, and inter‐year differences in composition for both communities in grazed mixed NWSG, and for Hemiptera in grazed Indian grass, corresponded with increasing bermudagrass coverage in those treatments. Our results suggest that incomplete eradication of exotic forages prior to establishment of NWSG may be exacerbated by grazing, which could then impact stand condition and insect communities.  相似文献   

9.
Grazing refuges, external avoidance of herbivory and plant diversity   总被引:16,自引:1,他引:16  
Avoidance and tolerance are the two means by which plants cope with herbivores. Avoidances internal to the plant, such as morphology, chemical repellants, thorns, etc., have received considerable attention in the plant‐herbivore literature, but relatively little consideration has been given to avoidances external to the plant. We develop a conceptual framework of external plant avoidances of herbivory based on foraging selection impedances (associational avoidances), behavioral impedances (indirect avoidances), and physical impedances (refuges) organized along axes of efficiency, degree of protection, and necessity of tolerance characteristics. Associational avoidances are uncommon for terrestrial mammalian herbivores compared to plant‐insect or marine situations. Indirect avoidances mediated through herbivore territoriality, predator avoidance, and other behaviors independent of foraging decisions are probably common in nature, but few have been formally documented. Biotic and geologic refuges providing a physical impedance are the only avoidances shown to have implications for plant biodiversity. This is particularly true for geologic refuges, where there is not a tradeoff between competition and the refuge effect. Small geologic refuges (rock outcrops, cliffs, etc.) are more likely to also positively or negatively alter associated plant microenvironments than large geologic refuges (mesas, islands, etc.). In a survey, 86% of small refuge studies reported positive effects on plant diversity compared to 50% for large refuges. Geologic refuges in more productive environments were more important in protecting diversity than refuges in less productive, semiarid environments, and the effects of protection were greater in communities with short compared to long evolutionary histories of grazing. Other characteristics of refuges such as extent across the landscape and the manner they alter or ameliorate the environment, as well as characteristics of the herbivore such as small or large, generalist or specialist may also determine the effectiveness of refuges, but there are too few studies to assess these factors.  相似文献   

10.
Abstract. Question: What are the grazing effects in the spatial organization and the internal structure of high and low cover patches from a two‐phase vegetation mosaic? Location: Patagonian steppe, Argentina. Methods: We mapped vegetation under three different grazing conditions: ungrazed, lightly grazed and heavily grazed. We analysed the spatial patterns of the dominant life forms. Also, in each patch type, we determined density, species composition, richness, diversity, size structure and dead biomass of grasses under different grazing conditions. Results: The vegetation was spatially organized in a two‐phase mosaic. High cover patches resulted from the association of grasses and shrubs and low cover patches were represented by scattered tussock grasses on bare ground. This spatial organization was not affected by grazing, but heavy grazing changed the grass species involved in high cover patches and reduced the density and cover of grasses in both patch types. Species richness and diversity in high cover patches decreased under grazing conditions, whereas in low cover patches it remained unchanged. Also, the decrease of palatable grasses was steeper in high cover patches than in low cover patches under grazing conditions. Conclusions: We suggest that although grazing promotes or inhibits particular species, it does not modify the mosaic structure of Patagonian steppe. The fact that the mosaic remained unchanged after 100 years of grazing suggests that grazing does not compromize population processes involved in maintaining patch structure, including seed dispersal, establishment or biotic interactions among life forms.  相似文献   

11.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

12.
放牧干扰下的蝗虫-植物相互作用关系   总被引:8,自引:1,他引:8  
本文研究了内蒙古典型草原植物和蝗虫群落在不同放牧强度影响下的多样性、均匀性和丰盛度变化。比较了蝗虫群落与植物群落在放牧梯度上的相互作用关系。研究发现,放牧干扰活动会明显地影响植物和蝗虫群落结构,但蝗虫群落结构的变化趋势并非与植物完全同步。蝗虫与植物间的联系更多地表现在植物起着蝗虫栖息地条件的作用,而并不完全是食料植物的作用。文中对放牧实践与多样性保护的关系进行了讨论。  相似文献   

13.
1. Grasshoppers are dominant herbivores in grassland ecosystems, and many studies have examined how grazing by large herbivores and precipitation patterns individually influence the dynamics of grassland grasshopper assemblages, but their combined effects are largely unknown. 2. In this study, grazing intensities (ungrazed, moderate, and heavy) were manipulated and precipitation (ambient and increased amount of rainfall) altered in a field experiment to test the effects of grazing and altered precipitation on a grasshopper community in a meadow steppe in northeastern China. 3. It was found that grasshopper species richness did not change according to different grazing intensities under ambient precipitation, but was significantly higher (by 38.1%) in moderate grazing intensities under increased precipitation. Grasshopper abundance increased considerably with increasing grazing intensities in ambient precipitation treatments; however, grasshopper abundance in heavy grazing intensities was significantly lower (by 32.9%) than in the other two grazing intensities under increased precipitation. Moreover, the responses of grasshopper abundance to grazing under altered precipitation were species‐specific. 4. Grazing effects on grasshopper species diversity were mediated through the species richness and biomass of grasses (food resources), but the effects on grasshopper abundance were mediated through plant height (vegetation structure) under altered precipitation. 5. These results suggest that appropriate grazing by large herbivores would be considered as beneficial management practices for maintaining grasshopper diversity and abundance under conditions of increased precipitation in grassland ecosystems. Additionally, greater attention should be paid to the population dynamics of different grasshopper species to better understand the responses of grasslands to grazing and altered precipitation.  相似文献   

14.
Question: What is the impact of grazing regime on plant species abundance, plant growth form, plant productivity and plant nutrient concentrations in a forest steppe? Location: Hustai National Park in the forest steppe region of Mongolia. Methods: On the Stipa steppe we applied three different grazing regimes by using; (1) one type of exclosure which excluded grazing by large mammalian herbivores, mainly takh (Przewalski horse), (2) another type of exclosure that excluded both large and small (Siberian marmots) mammalian herbivores, and (3) control plots which were freely grazed. We measured species frequencies, tiller densities, plant biomass and nitrogen concentrations of the vegetation. Results: Exclusion from grazing by takh and marmots significantly increased plant standing crop, but marmot grazing and full grazing did not show significant differences. Protection from grazing decreased forage quality, shown by a lower N-concentration of the standing crop. However, this was solely the result of the lower live-dead ratio of the vegetation. The frequency of the rhizomatous Leymus chinensis decreased under reduced grazing, as did the frequency of the total of rhizomatous species. The frequency of Stipa krylovii increased under reduced grazing, as did its basal areas, tiller density and tussock height. Conclusion: Reduced grazing leads to a lower abundance of rhizomatous species and an increase in tussock species.  相似文献   

15.
Refuge theory proposes that a determinant of species richness (and percent parasitism) is the presence of host refuges. Plant structural refuges are good predictors of species richness for endophytic herbivores, but not for exophytic herbivores. For exophytic herbivores other traits such as relative abundance may provide refuge from parasitism. Using unbiased data on both relative abundance and larval parasitism of species in macrolepidopteran assemblages we tested the null hypothesis that percent parasitism was independent of abundance. Numerically subdominant species do not gain refuge from parasitism by persisting at low abundance. Parasitism was not different from what would be expected based on their numbers. Among numerically dominant species there was, nevertheless, a significant positive association between abundance and parasitism rate. However, dominant herbivores displayed high levels of parasitism even in the years when their abundance was low relative to other years. This suggests that dominant species may possess other traits that enhance their susceptibility to parasitoids.  相似文献   

16.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   

17.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

18.
We explored the net effects of grazing on soil C and N pools in a Patagonian shrub–grass steppe (temperate South America). Net effects result from the combination of direct impacts of grazing on biogeochemical characteristics of microsites with indirect effects on relative cover of vegetated and unvegetated microsites. Within five independent areas, we sampled surface soils in sites subjected to three grazing intensities: (1) ungrazed sites inside grazing exclosures, (2) moderately grazed sites adjacent to them, and (3) intensely grazed sites within the same paddock. Grazing significantly reduced soil C and N pools, although this pattern was clearest in intensely grazed sites. This net effect was due to the combination of a direct reduction of soil N content in bare soil patches, and indirect effects mediated by the increase of the cover of bare soil microsites, with lower C and N content than either grass or shrub microsites. This increase in bare soil cover was accompanied by a reduction in cover of preferred grass species and standing dead material. Finally, stable isotope signatures varied significantly among grazed and ungrazed sites, with δ15N and δ13C significantly depleted in intensely grazed sites, suggesting reduced mineralization with increased grazing intensity. In the Patagonian steppe, grazing appears to exert a negative effect on soil C and N cycles; sound management practices must incorporate the importance of species shifts within life form, and the critical role of standing dead material in maintaining soil C and N stocks and biogeochemical processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions  RAG designed study, performed research, analyzed data, wrote the paper; ATA designed study, wrote the paper; CGGM designed study, performed research, analyzed data; MGP performed research; OES designed study; RBJ designed study, contributed new methods.  相似文献   

19.
In 1997, we conducted a vegetation survey in three semi-arid natural grasslands (steppes) with different livestock grazing intensities in Southwest Heilongjiang Province, China, The dominant grassland species was the grass Stipa baicalensis Roshev. Grasslands with light, intermediate, and heavy grazing intensities were located 10, 5, and 2 km from a village, respectively. Villagers use the steppe to raise cattle, horses, sheep, and goats. Each of the three grasslands was surveyed by placing 100 quadrats (50 cm×50 cm) along a 50 m line transect. Each quadrat was divided into four equal areas (25 cm×25 cm; S-quadrats) and all plant species occurring in each of these smaller areas were identified and recorded. These data were summarized into frequency distributions and the percentage of S-quadrats containing a given species and the variance of each species were estimated. The power law was applied to these estimates. The power law was used to evaluate the spatial heterogeneity and frequency of occurrence for each species in the grassland community. The lightly grazed grassland exhibited high spatial heterogeneity (caused by large plant size), the highest species diversity, and a high occurrence of S. baicalensis. In contrast, the heavily grazed grassland exhibited high spatial heterogeneity (caused by patchy populations of small plant size), low species diversity, and a low occurrence of S. baicalensis. We judged that the heavily grazed grassland was overgrazed and exclusion of livestock from the degraded areas is necessary for recovery.  相似文献   

20.
Question: Is it possible to restore dry calcareous inland sand ecosystems with their characteristic plant community structure within a 4‐yr period by means of combined abiotic–biotic techniques (topsoil replacement, inoculation with raked/mown plant material from target areas)? Location: Upper Rhine valley, Germany. Methods: Two 4‐year experiments were carried out on former arable land, each in the proximity of a reference area bearing a similar complex of threatened sandy grasslands (experiment 1: fine‐scale; experiment 2: landscape scale). In both experiments we used nutrient‐poor deep‐sand substrate (abiotic approach), raked/mown inoculation material from target areas and grazing as management tool (biotic and management approach). The vegetation of the restoration and donor areas was sampled once a year and analysed by non‐metric multidimensional scaling (NMDS) ordination and target‐species ratios. Mixed linear models were calculated to determine effects of grazing (experiment 1) and year (both experiments). Results: NMDS revealed a continuous development of the restored sites towards the corresponding donor sites. Similarly, target‐species ratios of the restored sites tended towards the ratios of the donor sites. To date, grazing effects have mainly been structural: reduction of a carpet‐forming pleurocarpous moss species and of litter. In addition, cover of target species in relation to total plant cover was significantly enhanced by grazing in the last two study years. Conclusions: The combination of nutrient‐poor substrate, inoculation with raked/mown plant material and grazing proved to be a very effective restoration method for dry base‐rich sand ecosystems. After 4 yr the restored plant communities serve as well‐developed parts of a habitat network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号