首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteromorpha compressa is the dominant species in coastal areas of northern Chile receiving copper mine wastes. Copper remains as the main heavy metal in these coastal waters and it is accumulated in E. compressa growing at the impacted sites. Algae from these sites showed higher levels of lipoperoxides than from non‐impacted sites, which suggests the occurrence of cellular damage resulting from oxidative stress. The strong activation of ascorbate peroxidase detected in this study probably occurs in order to buffer this oxidative stress. Unexpectedly, the activity of glutathione reductase, normally coupled to ascorbate peroxidase activity, was not affected by the chronic exposure to the mine wastes. Moreover, catalase, dehydroascorbate reductase and glutathione peroxidase, commonly reported to buffer oxidative stress in plants and algae, were not detected in E. compressa from any of the studied sites. Levels of total glutathione and phenolic compounds decreased in algae from mine‐impacted sites. In contrast, high levels of dehydroascorbate were found in algae from impacted sites, whereas ascorbate remained unchanged. Therefore, it is suggested that E. compressa tolerates a copper‐enriched environment, and the accompanying oxidative stress, through the accumulation of copper, activation of ascorbate peroxidase, synthesis of ascorbate (accumulated as dehydroascorbate) and consumption of glutathione and water‐soluble phenolic compounds.  相似文献   

2.
3.
Copper‐imposed oxidative stress and antioxidative defence responses were investigated in the primary leaves of Phaseolus vulgaris L. plants grown on hydroponics containing 50 μM CuSO4. Copper mainly accumulates in roots; therefore, an increase of the copper content in the leaves was only observed 48 h after the start of the copper supply. Nevertheless, an increase of the thiobarbituric acid reactive metabolites (TBArm) content, an indication of stress, occurred immediately following copper application. Because the ascorbate‐glutathione pathway is considered as a major antioxidative defence mechanism, the evolution of the enzymes and the related metabolites involved in this pathway were studied in the primary leaves as a function of plant copper assimilation. The capacities of monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were increased before elevated amounts of copper could be detected in the leaves. The early enhancement of glutathione reductase was only temporary. After copper accumulation in the leaves, a second increase of the glutathione reductase capacity and also an increase of the ascorbate peroxidase capacity (EC 1.11.1.11) were observed. These changes in enzymatic capacity modified the level of the metabolites involved. Increase of the ascorbate pool and maintenance in its reduced form was observed immediately after the start of the treatment. In the beginning of the experiment, the glutathione disulphide/reduced glutathione ratio was higher in the treated plants as compared to the controls. However, towards the end of the experiment, the total glutathione pool, as well as the reduced glutathione content, increased, resulting in a lower ratio value for the treated plants. In conlusion, copper‐imposed oxidative stress, as well as the antioxidative defence response in the leaves, appears to be biphasic. An indirect preventive effect on the antioxidative defence system was observed during the first phase before the leaf copper content increased. A root‐to‐shoot signalling system appears to be involved. Direct oxidation by copper of reduced cell metabolites occurred during the second phase when the leaf copper content was enhanced.  相似文献   

4.
Although strobilurins are one of the most effective and broad spectrum classes of systemic fungicides, they may also increase plant stress tolerance by modulating the activity of antioxidant enzymes. To address this issue, the effect of azoxystrobin (Az) on the activity of antioxidant enzymes and on the concentrations of antioxidant metabolites and oxidative stress‐related compounds was studied in rice plants (cv. Metica‐1) either inoculated or not with Bipolaris oryzae, the causal agent of brown spot (BS). The Az minimally affected the enzyme activities, but consistently increased the glutathione reduced (GSH) concentrations in the noninoculated plants. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase were increased upon B. oryzae infection, but such increases were greatly limited in the Az‐sprayed plants. Catalase activity decreased in the inoculated plants compared to the noninoculated plants regardless of fungicide treatment. The GSH concentration increased in response to the B. oryzae infection, and the Az‐sprayed plants sustained higher levels of GSH at advanced stages of fungal infection than did the nonsprayed plants. The inoculated plants exhibited an extensive oxidative stress as evidenced by higher concentrations of hydrogen peroxide and malondialdehyde compared to the noninoculated plants, but lower and later increases were recorded in the Az‐sprayed plants than in the nonsprayed plants. Therefore, Az greatly reduces B. oryzae‐induced oxidative stress by limiting BS development rather than by activating antioxidant enzymes. The GSH, however, seems to be Az‐modulated, and this may partially explain the constrained oxidative stress observed in the Az‐sprayed plants.  相似文献   

5.
Drought stress has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). To increase our understanding of the effects of drought stress on antioxidant processes, we investigated the response of the ascorbate-deficient Arabidopsis thaliana vtc1 mutant to drought stress. After drought stress, vtc1 mutants exhibited increases in several oxidative parameters, including H2O2 content and the production of thiobarbituric acid reactive substances. Decreases in chlorophyll content and chlorophyll fluorescence parameters were also observed. The vtc1 mutants had higher total glutathione than did wild-type (WT) plants after 48 h of drought stress. A reduced ratio of glutathione/total glutathione and an increased ratio of dehydroascorbate/total ascorbate were observed in the vtc1 mutants compared with the WT plants. In addition, the activities of enzymes that are responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, were decreased in the vtc1 mutants compared with the WT plants. Similar reductions in activity in the vtc1 mutant were observed for the enzymes that are responsible for the regeneration of ascorbate and glutathione, including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that low intrinsic ascorbate and impaired ascorbate–glutathione cycling in the vtc1 mutant induced a decrease in the reduced form of ascorbate, which enhanced sensitivity to drought stress.  相似文献   

6.
In order to analyse copper‐induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione‐S‐transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes.  相似文献   

7.
Abstract

Lanthanum is one of the most abundant elements in rare earths enriched fertilizers and is supposed to be one of the main responsible of the effects of such fertilizers on crops. In this work, the effect of lanthanum nitrate on H2O2 production, lipid peroxidation, ascorbate and glutathione content, and on the activity of cytosolic ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase in Lycopersicon esculentum L. cv. Marmande during drought stress was evaluated. The results confirmed that treatments of tomato plants with lanthanum nitrate affect the antioxidant cellular defences and that lanthanum toxicity is dependent on the way of treatment. The stimulation of antioxidant systems did not induce any improvement in drought stress responses in tomato but seemed to be only a consequence of the unbalance in cell metabolism due to the treatment with lanthanum nitrate.  相似文献   

8.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

9.
Abstract

The effects of increasing salt concentrations on the growth, electrolyte leakage, lipid peroxidation, and major antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) of borage plants were investigated. Plants were grown in half strength of Hoagland nutrient solution added with 0, 25, 50, and 75 mM of NaCl. Most measured parameters were affected by salinity. Increasing salt levels caused a significant reduction in leaf area, stem length, stem diameter, flower number, and dry masses of different organs. Growth of borage plants, in terms of dry weight, was affected. As a consequence of salinity stress, lipid peroxidation and membrane permeability was increased. Antioxidant activity showed an increase in the activity of superoxide dismutase, a non-induced activity of catalase and ascorbate peroxidase, and a slight increase in glutathione reductase activity. The results indicate that borage plants appear to be sensitive to salt stress, since enzymes related to antioxidant enzymatic defense system in treated leaves should be highly active.  相似文献   

10.
We investigated the possible mediatory role of melatonin in protecting wheat plants from cold stress. Ten-day-old wheat seedlings were pretreated with 1 mmol l?1 melatonin for 12 h and subsequently exposed to stress conditions at 5/2 °C (day/night) for 3 days. Cold stress caused serious reductions in leaf surface area, water content, and photosynthetic pigment content, whereas melatonin application attenuated these reductions. Accumulation of reactive oxygen species (ROS), including superoxide and hydrogen peroxide, was very high in cold-stressed plants and caused lipid peroxidation in membranes. Concomitantly, ROS damaged the DNA profile and negatively influenced expression and/or activity of many enzymes, including RuBisCo. When compared to controls, cold-stressed plants had higher activities of the antioxidant enzymes superoxide dismutase, guaicol peroxidase, ascorbate peroxidase, and glutathione reductase and higher levels of the antioxidant compounds total ascorbate, reduced ascorbate, total glutathione, reduced glutathione, and phenolic substances; however, this elevation could not cope with the destructive effects of cold stress. Melatonin-pretreated plants exhibited greater increases in these parameters comparison with untreated cold-stressed plants. Isozyme bands monitored in native gel and RuBisCo expression supported these changes. Also, due to the cold-induced increase in dehydroascorbate and oxidized glutathione, the corrupted redox status in the cell was ameliorated by melatonin application. Similarly, levels of the osmoprotectants total soluble protein, carbohydrate, and proline were also increased by cold stress; however, melatonin-applied seedlings had a higher content of these solutes in comparison to untreated cold-stressed plants. We suggest that melatonin can improve plant resistance to cold stress in wheat seedlings by directly scavenging ROS and by modulating redox balance and other defence mechanisms.  相似文献   

11.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

12.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

13.
C. Shan  F. He  G. Xu  R. Han  Z. Liang 《Biologia Plantarum》2012,56(1):187-191
This study investigated the regulation of ascorbate and glutathione metabolism by nitric oxide in Agropyron cristatum leaves under water stress. The activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH) and γ-glutamylcysteine synthetase (γ-ECS), and the contents of NO, reduced ascorbic acid (AsA), reduced glutathione (GSH), total ascorbate and total glutathione increased under water stress. These increases were suppressed by pretreatments with NO synthesis inhibitors N G-nitro-L-arginine methyl ester (L-NAME) and 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). However, application of L-NAME and cPTIO to plants sufficiently supplied with water did not affect the activities of above mentioned enzymes and the contents of NO and above mentioned antioxidants. Pretreatments with L-NAME and cPTIO increased the malondialdehyde (MDA) content and electrolyte leakage of plants under water stress. Our results suggested that water stress-induced NO is a signal that leads to the upregulation of ascorbate and glutathione metabolism and has important role for acquisition of water stress tolerance.  相似文献   

14.
The effect of magnesium (Mg2+)‐deficiency on the antioxidant responses of Capsicum annuum was investigated over a 60‐day period under controlled conditions. This Mg2+‐deficiency aimed to mimic the physiological conditions that plants may experience in the field. At each harvest time, five different leaf‐levels (L2 to L6) were distinguished. L2 and L6 correspond to the second and sixth youngest leaves, respectively. The following parameters were determined: Mg2+, chlorophyll and protein contents, total and redox pools of ascorbate and glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Under Mg2+‐deficiency, leaf Mg2+ contents decreased over time in all leaf‐levels except in the second youngest leaves (L2), where they remained constant at about 0.25% (dry weight basis). Mg2+‐deficiency led to an increase in the antioxidant enzyme activities concomitant with an increase in the ascorbate and glutathione pools, whereas total chlorophyll and soluble protein contents decreased. The L2 leaves showed an increase in glutathione reductase activity and in the ascorbate redox state whereas no difference was observed for the other parameters. Superoxide dismutase activities increased in L5 leaves from day 15 and, afterwards, in L3 to L5 leaves, irrespective of Mg2+ content. At day 30, glutathione reductase activities increased in L2 to L4 leaves and dehydroascorbate reductase activities in L4 leaves. At day 45, we observed an increase in the ascorbate peroxidase activities in L3 to L5 leaves. At the same time, ascorbate and glutathione pools increased in intermediate leaves, whereas chlorophyll content decreased in L3 and L4 leaves, and protein content decreased in L4 leaves. Results suggest that pepper leaves enhance their defence capacities against oxidative stress by increasing ascorbate more than glutathione synthesis. However, cells showed higher regeneration rates for the glutathione redox state than for the ascorbate redox state.  相似文献   

15.
Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA‐NONOate, a pure NO slow generator, and of SIN‐1 (3‐morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non‐enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA‐NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn‐SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN‐1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn‐SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO‐resistant AP and mitochondrial APX may be important components of the H2O2‐signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn‐SOD, against NO and ONOO? stress in plant mitochondria.  相似文献   

16.
Citrus plants originate from southeastern Asia, in a large area with various climates characterized by a broad range of temperatures. Some species have been diversified in temperate climates, others in subtropical climates. Temperature is assumed to be a key factor in citrus species adaptation and diversification of basic cellular functions. In a field experiment, the tolerance of the three fundamental Citrus species C. medica L., C. reticulata Blanco and C. maxima (Burm.) Merr., and Fortunella japonica (Thunb.) Swing. to photooxidative stress caused by seasonal climatic changes was evaluated on adult trees by measuring net photosynthesis (Pnet), stomatal conductance (Gs), maximum photosynthesis (Pmax) and chlorophyll fluorescence (Fv/Fm). In addition, seasonal changes in oxidative status, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) and antioxidant metabolites (ascorbate and glutathione) were monitored. Mandarin and pummelo appeared to be the most tolerant, showing the lowest down-regulation of photosynthetic parameters, and the lowest accumulation of oxidized compounds associated with efficiency of their antioxidant system. Kumquat showed intermediate behaviour, with a large diminution of photosynthetic parameters and marked accumulation of hydrogen peroxide, whereas the malondialdehyde content remained low, with a strong induction of glutathione synthesis. Finally, citron appeared to be the most sensitive genotype with a marked decrease in photosynthetic performance, the largest accumulation of oxidative parameters, insufficient induction of antioxidant enzymes and down-regulation of ascorbate and glutathione synthesis.  相似文献   

17.
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.  相似文献   

18.
It is generally recognized that excess selenium (Se) has a negative effect on the growth and development of plants. Numerous studies have identified key genes involved in selenium tolerance in plants; however, our understanding of its molecular mechanisms is far from complete. In this study, we isolated an Arabidopsis selenium‐resistant mutant from the mutant XVE pool lines because of its increased root growth and fresh weight in Se stress, and cloned the gene, which encodes the cytosolic ascorbate peroxidase (APX1). Two other APX1 gene knockout allelic lines were also selenium resistant, and the APX1‐complementary COM1 restored the growth state of wild type under Se stress. In addition, these APX1 allelic lines accumulated more Se than did wild‐type plants when subjected to Se stress. Further analysis revealed that the APX1‐mediated Se tolerance was associated, at least in part, with the enhanced activities of antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Moreover, enhanced Se resistance of the mutants was associated with glutathione (GSH), which had the higher expression level of GSH1 gene involved in GSH synthesis and consequently increased GSH content. Our results provide genetic evidence indicating that loss‐of‐function of APX1 results in tolerance to Se stress.  相似文献   

19.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

20.
We provide evidence of an important role for ascorbate free radical (AFR) reductase, dehydroascorbate (DHA) reductase, glutathione, and glutathione reductase as components of an oxidant-scavenging system in the midgut of larval Helicoverpa zea. Also, midgut ortho-quinone reductase is a potentially important constituent of the protective system against quinones. The midgut activities of AFR reductase, DHA reductase, glutathione reductase, and ortho-quinone reductase were, respectively, 168, 22.1, 6, and 39.5 nmol/min/mg protein. The relatively high activity of these enzymes in the midgut provides circumstantial evidence for a protective mechanism utilizing ascorbate as an antioxidant and glutathione and/or NADPH as reductants. To our knowledge, the enzymes AFR reductase and DHA reductase have not been reported in insects. The particular relevance of this system to antioxidant protection, and in particular to the detoxication of quinones formed in damaged leaf tissues, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号