共查询到20条相似文献,搜索用时 15 毫秒
1.
The benthic recruitment of Microcystis was simulated in vitro in order to characterize the colonies of Microcystis recruited and to study the impact of intracellular and extracellular microcystins (MCs), and the influence of colony size on the recruitment process. We observed recruitment dynamics consisting of a lag phase followed by a peak and then a return to low recruitment rates, mainly controlled by passive resuspension throughout the experiment, and by physiological processes during the recruitment peak. Ninety‐seven percent of the Microcystis colonies recruited were <160 μm in maximum length, and their cells contained much greater amounts of MCs (0.26 ± 0.14 pg eq microcystin leucine‐arginine variant [MC‐LR] · cell?1) than those in benthic colonies (0.021 ± 0.004 pg eq MC‐LR · cell?1). The MC content of recruited Microcystis varied significantly over time and was not related to changes in the proportion of potentially toxic genotypes, determined using real‐time PCR. On the other hand, the changes in MC content in the potentially toxic Microcystis recruited were closely and negatively correlated with recruitment dynamics; the lowest MC contents corresponded to high recruitment rates, and the highest MC contents corresponded to low recruitment rates. Thus, depending on temperature and light conditions, these variations are thought to result from the selection of various subpopulations from among the smallest and the most toxic of the initial benthic population. Adding purified MC‐LR to experimental treatments led to a decreased recruitment of Microcystis and more specifically of mcyB genotypes. 相似文献
2.
Recruitment of Microcystis from sediments to the water column was investigated in shallow (1–2 m) and deep (6–7 m) areas of Lake Limmaren, central Sweden. Recruitment traps attached to the bottom were sampled on a weekly basis throughout the summer season ( June–September). A comparison between the two sites showed that the recruitment from the shallow bay was significantly higher over the entire season for all three Microcystis species present in the lake. Maximum rates of recruitment were found in August, when 2.3 × 105 colonies m ? 2·day ? 1 1 Received 18 April 2002. Accepted 29 October 2002. left the sediments of the shallow area. Calculated over the entire summer, Microcystis colonies corresponding to 50% of the initial abundance in the surface sediments were recruited in the shallow bay, whereas recruitment from the deep area was only 8% of the sediment colonies. From these results we conclude that shallow areas, which to a large extent have been overlooked in studies of recruitment of phytoplankton, may be crucial to the dynamics of these organisms by playing an important role as inoculation sites for pelagic populations. 相似文献
3.
THE IMPORTANCE OF SHALLOW SEDIMENTS IN THE RECRUITMENT OF ANABAENA AND APHANIZOMENON (CYANOPHYCEAE)1
Recruitment of Anabaena and Aphanizomenon from the sediments to the water column was investigated in shallow (1–2 m) and deep (6–7 m) areas of Lake Limmaren, central Sweden. Recruitment traps attached to the bottom were sampled weekly throughout the summer season (June through September). A comparison between the two sites shows that the largest part of the recruited cells originated from the shallow site, although recruitment occurred at all depths in the lake. There were also differences between the species, regarding the site as well as the timing of the recruitment. The contribution of the inoculum to the pelagic population was calculated to vary between 0.003% and 0.05% for the different species. From these results we conclude that shallow sediments are more important than deep ones for the recruitment and that the inoculum in Lake Limmaren is small but may still be an important factor in the population dynamics. 相似文献
4.
Delphine Latour Marie‐Jos Salenon Jean‐Louis Reyss Herv Giraudet 《Journal of phycology》2007,43(3):417-425
Analysis of a sediment core taken from the Grangent reservoir in 2004 showed the presence of high concentrations of Microcystis aeruginosa Kütz. colonies at the sediment surface (250 colonies · mL sediment?1) and also at depths of 25–35 cm (2300 colonies·mL sediment?1) and 70 cm (600 colonies · mL sediment?1). Measurements of radioactive isotopes (7Be, 137Cs, and 241Am) along with photographic analysis of the core were used to date the deep layers: the layer located at ?30 cm dates from summer 2003, and that located at ?70 cm from 1990 to 1991. The physiological and morphological conditions of those benthic colonies were compared with those of planktonic colonies using several techniques (environmental scanning electron microscopy [ESEM], TEM, DNA markers, cellular esterases, and toxins). The ESEM observations showed that, as these colonies age, peripheral cells disappear, with no cells remaining in the mucilage of the deepest colonies (70 cm), an indication of the survival thresholds of these organisms. In the benthic phase, the physiological conditions (enzyme activity, cell division, and intracellular toxins) and ultrastructure (particularly the gas vesicles) of the cells surviving in the heart of the colony are comparable to those of the planktonic form, with all the potential needed for growth. Maintaining cellular integrity requires a process that can provide sufficient energy and is expressed in the reduced, but still existing, enzymatic activity that we measured, which is equivalent to a quiescent state. 相似文献
5.
Irene Karlsson‐elfgren Emil Rydin Per Hyenstrand Kurt Pettersson 《Journal of phycology》2003,39(6):1050-1056
Different parameters in the life cycle of the colony forming cyanobacterium Gloeotrichia echinulata (J.E. Smith) Richter was evaluated in Lake Erken, Sweden. Recruitment of colonies from the sediments and pelagic abundance were measured during 2 years. These data were then used in a model to evaluate and estimate parameters of the life cycle. In our study, recruitment alone only contributed to a small part (<5%) of the maximum G. echinulata abundance that occurred during late summer. However, recruitment from shallow sediments forms the important seed for the pelagic population. Together with measured rates of migration from the sediment, variations in either pelagic colony division rate or pelagic residence time could explain variations in the measured abundance of G. echinulata in situ. 相似文献
6.
The in situ fate of the toxic cyclic heptapeptides, the microcystins, produced by blooms of Microcystis was examined at two stations in a hypertrophic Japanese lake. Microcystins were detected in all samples of Microcystis with quantities varying seasonally and spatially (230–950 μg · g dry wt?1 at St. 1 and 160–746 μg · g dry wt?1 at St. 2) and composed of microcystin-LR, -RR, and-YR. Microcystin-RR was the dominant toxin in most samples. A large amount of microcystin (1.1 μg · L?1) was detected in only one sample of filtered lake water. Accumulation of microcystin in zooplankton was indirectly estimated from a newly developed equation model. Large amounts of microcystin (75–1387 μg · g dry wt?1) were accumulated in the zooplankton community, which consisted of two cladocerans, Bosmina fatalis Burckhardt and Diaphanosoma brachyurum Lieve, and a copepod, Cyclops vicinus Uljanin, that co-occurred with the toxic Microcystis blooms. The maximum percent of microcystin content in zooplankton to that in Microcystis was 202%. Among the three species of zooplankton, only B. fatalis seemed to be responsible for accumulation of the microcystins because C. vicinus appeared to avoid contact with Microcystis cells and D. brachyurum did not consume colonies of Microcystis. Microcystins may be transferred to higher trophic levels through B. fatalis. 相似文献
7.
Cultures were cloned from a sample containing Microcystis aeruginosa, M. flos-aquae and a few morphological intermediates. The M. aeruginosa cultures remained distinct from the M. flos-aquae cultures in (a) cell size, (b) cell aggregation pattern, (c) width of the mucilage surrounding the multicellular colonies, (d) sharpness of the mucilage boundary, (e) efect of 0.1–1.0 μM calcium chloride on the disaggregation of multicellular colonies, (f) frequency of mucilage mutants and (g) colony morphology on agar media. No M. flos-aquae culture produced morphs resembling M. aeruginosa, inconsistent with proposals that M. flos-aquae is a developmental stage or environmentally-induced variant of M. aeruginosa. After longterm cultivation, but not soon after origanal isolation, several M. aeruginosa cultures contained mutants with diminished mucilage production and an altered colony shape. 相似文献
8.
A strong biomass increase of two Anabaena species was observed in natural plankton community enclosed into nine large mesocosms (51 m3) and manipulated with mineral nutrients and an organic carbon source during a 3‐week period in the coastal Baltic Sea. The water column and settled material from the bottom of the mesocosms were sampled at 2‐day intervals. Planktonic populations of Anabaena lemmermannii Richter and A. cylindrica Lemmermann and sedimentation rates of akinetes to the bottom were quantified. Comparing mesocosms with artificially induced nitrogen and phosphorus limitation, we found that during the third week of the experiment, the population size of A. lemmermannii was clearly higher in nitrogen‐limited units (by a factor of 2.4), whereas the production rate of akinetes was higher in the phosphorus‐limited units (by a factor of 2.5). Input of freshly produced A. lemmermannii akinetes to the benthos was on average 15 × 106 and 6 × 106 cells· m?2·d?1 in the P? and N? limited mesocosms, respectively. Our estimates of specific akinete production rate of A. lemmermannii in P? and N? limited mesocosms revealed an even larger divergence (a factor of 5.5), being on average 2.4 and 0.4 akinetes·10?3 vegetative cells?1·d?1, respectively. The phosphorus addition effectively reduced akinete production of A. lemmermannii. Differences in the nutrient manipulation had no apparent effect on the biomass and akinete production of A. cylindrica. The akinete production pattern of A. cylindrica revealed a 1‐week delay compared with the vegetative population peak, whereas such a delay was not obvious in A. lemmermannii. 相似文献
9.
Sexual reproduction of Gymnodinium nolleri ( Ellegaard & Moestrup 1999 ) was studied by intercrossing experiments in all combinations of six clonal strains and backcrossing of five clonal F1 offspring. The results indicated that the conjugation of G. nolleri responded to the existence of more than two sexual types (complex heterothallism) and that compatibility between progeny of one cyst (inbreeding) was the rule. Sexual fusion, planozygote formation and development, cyst formation, and germination and planomeiocyte division were followed using time‐lapse photography. This study revealed many similarities between the sexual stages and life cycle pattern of G. nolleri and the related G. catenatum and the existence under culture conditions of an alternative cycle between vegetative cells and zygotes without a hypnozygote stage. The fate of zygotes, division or encystment, was influenced by the nutritional status of the external medium. The division of G. nolleri planozygotes was promoted by high levels of external nutrients, whereas the maximum percentage of encystment was recorded when phosphates were reduced in the isolation medium. The division of zygotes might be different from both vegetative and planomeiocyte division because it resulted in two‐cell chains with the cells not oriented in parallel. 相似文献
10.
Microcystis aeruginosa Kütz. 7820 was cultured at 350 and 700 μL·L ? 1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom‐forming cyanobacterium. Doubling of CO2 concentration in the airflow enhanced its growth by 52%–77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light‐saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC‐saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3 ? levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 μL·L ? 1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3 ? concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease. 相似文献
11.
12.
Victoria López‐Rodas Mónica Rouco Sebastián Sánchez‐Fortún Eduardo Costas 《Journal of phycology》2011,47(5):1036-1043
We tested if different adaptation strategies were linked to a stress gradient in phytoplankton cells. For this purpose, we studied the adaptation and acclimation of Dictyosphaerium chlorelloides (Naumann) Komárek et Perman (Chlorophyta) and Microcystis aeruginosa (Kütz.) Kütz. (Cyanobacteria) to different water samples (from extremely acid, metal‐rich water to moderate stressful conditions) of the Agrio River–Caviahue Lake system (Neuquén, Argentina). Both experimental strains were isolated from pristine, slightly alkaline waters. To distinguish between physiological acclimation and genetic adaptation (an adaptive evolution event), a modified Luria‐Delbrück fluctuation analysis was carried out with both species by using as selective agent sample waters from different points along the stress gradient. M. aeruginosa did not acclimate to any of the waters tested from different points along the stress gradient nor did D. chlorelloides to the two most acidic and metal‐rich waters. However, D. chlorelloides proliferated by rapid genetic adaptation, as the consequence of a single mutation (5.4 × 10?7 resistant mutants per cell per division) at one locus, in less extreme water and also by acclimation in the least extreme water. It is hypothesized that the stress gradient resulted in different strategies of adaptation in phytoplankton cells from nonextreme waters. Thus, very extreme conditions were lethal for both organisms, but as stressful conditions decreased, adaptation of D. chlorelloides cells was possible by the selection of resistant mutants, and in less extreme conditions, by acclimation. 相似文献
13.
M. N. Bruton 《African Journal of Aquatic Science》2013,38(2):81-88
SUMMARY The habitat preferences of the sharptooth catfish, Clarias gariepinus, in a clear coastal lake, Lake Sibaya, are described. Larval and small juvenile catfish inhabit flotsam and the rootstocks of plants in very shallow marginal areas. Larger juveniles inhabit densely-vegetated marginal pools, and may venture into open areas at night. Adult catfish (over 350 mm TL) occupy offshore areas, where their density is highest in terrace and sheltered bay habitats, and least in slope and profundal habitats. Adult catfish undergo a diel migration into shallow water at night and into deeper water during the day which is more marked at low lake levels. The methods used to capture catfish, and the main habitats in Lake Sibaya, are also described. 相似文献
14.
Rmi Wattier John F. Dallas Christophe Destombe Pierre Saumitou-Laprade Myriam Valero 《Journal of phycology》1997,33(5):868-880
Four single locus microsatellites identified in the red alga Gracilaria gracilis (Stackhouse) Steentoft, Irvine, et Farnham (Rhodophyta) were examined for allelic diversity at different spatial and taxonomic levels. First, because simple morphological diagnostic characters are often missing within the Gracilariaceae, we developed a simple and rapid method based on rDNA ITS size variation in order to verify the taxonomic status of the samples used in this study. All European (including Mediterranean samples), Argentinian, and Namibian samples used in our study were confirmed to be a homogenous G. gracilis group. By contrast, our results on rDNA ITS sizes showed that Gracilaria from Japan, initially identified as G. gracilis, was different from the rest of the G. gracilis group. Secondly, microsatellite polymorphism and conservation at the species level was tested on the worldwide collection of G. gracilis and within a single population. The loci Gv1AAG and Gv1AAC showed no allelic variation, whereas two others, Gv1CT and Gv2CT, were highly polymorphic. All microsatellite loci were conserved within G. gracilis, except in the sample from Japan. The taxonomic status of G. gracilis from Japan is thus questionable. This study revealed a high level of within-population polymorphism (52 alleles for Gv1CT and 12 for Gv2CT). Moreover, the combination of these two loci was shown to be very powerful for identifying individuals within a population, that is, 93% of the individuals were characterized by a unique genotype. Finally, conservation of the four loci was tested in taxonomically related species of Gracilaria (G. chilensis, G. pacifica, and G. tikvahiae) and two Gracilariopsis species (Gs. sp. and Gs. longissima). The results suggest that the polymorphic locus Gv2CT may provide a valuable genetic marker within the different species of the Gracilariaceae. 相似文献
15.
A new species of a chlorarachniophyte alga, Bigelowiella longifila sp. nov., is described. It is classified as a member of Bigelowiella as flagellate cells constitute the main stage of the life cycle. However, this alga is different from the only described species of the genus, B. natans Moestrup, in having a unique amoeboid stage in the life cycle. We observed an interesting behavior of amoeboid daughter cells after cell division: One of the two daughter cells inherits the long filopodium of the parental cell, and it subsequently transports its cell contents through the filopodium to develop at its opposite end. The other daughter cell forms a new filopodium. This unequal behavior of daughter cells may have evolved before the chlorarachniophytes and some colorless cercozoans diverged. 相似文献
16.
Kazuhiko Koike Asami Nishiyama Kazuya Saitoh Keisuke Imai Kanae Koike Atsushi Kobiyama Takehiko Ogata 《Journal of phycology》2006,42(6):1247-1256
A variety of studies have examined the sexual life cycle of species belonging to the genus Dinophysis Ehrenberg. Here, we used TEM to investigate the mechanism of cellular fusion during the sexual life cycle in Dinophysis fortii Pavillard. We observed that fusion always occurred between a normal‐sized cell and a small cell following attachment of their ventral margins. After cell attachment, the small cell moved toward the epitheca of the normal‐sized cell, and the cingular and sulcal lists of the small cell shrunk or were almost lost. The epitheca of the normal‐sized cell then opened between the cingulum plates and the upper cingular list, after which the small cell was gradually engulfed. This is the first ultrastructural observation in a dinoflagellate of a larger cell opening its epitheca to engulf the smaller gamete. In another case, the normal‐sized cell did not open the epitheca, the cell wall of the attached small cell underwent extensive extracellular digestion, and the cytoplasm appeared to flow into the normal‐sized cell via the periflagellar area. Inflow of the nucleus was not observed in this case, suggesting that it represented a failure of sexual fusion. In both cases, membranous separations between the cytoplasm of the two cells were not observed. At the beginning of the fusion process, the nucleus of the small cell was substantially deformed. The planozygote, formed upon completion of sexual fusion, sometimes had two longitudinal flagella, but was identical to a normal vegetative cell in its cellular shape, as already mentioned by previous authors. 相似文献
17.
Cystocarpic and spermatangial plants of rarely reported red alga Bonnemaisonia geniculata Gardner, epiphytic on Odonthalia Aoccosa (Esp.) Falk, were collected from june to September 1975 at shell Beach, california. Carpospores inoculated into unialgal culture divided, upon germination, in to two daughter cells, both of which formed erect and rhizoidal axes, Erect axes were uniseriale and alternately branched with a distictive zigzag pattern of axial cells. No tetrasporangia developed in culture. The presumptive tetrasporangia developed in culture to a described genus. Plants morphologically similar to those cultured from carpospores were found at the collection site; they bore tetrasporangia from February to june. Cullured letrasporews gave rise to male and female plants similar to those of field-collected B. geniculate in ca. a I:I ratio. Fertile female plants in the presence of male plants formed cystocarps. Carpospores gave rise to the alternately branched tetrasporophyte phase. Bonnemaisonia geniculate has a heteromorphic life history involving a previously undescribed tetrasporophyte. 相似文献
18.
Difficulties often occur in separating closely related dinoflagellate species. In this study, the potential utility of mitochondrial cytochrome b (cob) gene sequence and mRNA editing characteristics was assessed using Prorocentrum Ehrenberg as a model. The cob sequences and the patterns of their mRNA editing were analyzed for several Prorocentrum taxa. Results revealed little difference in cob sequence and mRNA editing characteristics between geographic populations of P. minimum (Pavillard) Schiller, while a notable difference was detected between different species (P. minimum and P. micans Ehrenberg). Furthermore, these P. minimum populations consistently formed a tight cluster on phylogenetic trees inferred from cob sequences as well as mRNA editing characteristics, whereas different Prorocentrum species were well separated, with a genetic distance of 0.0042±0.0024 for the former and 0.0141±0.0012 for the latter (P<0.01; two‐tailed t‐test). When the analysis was applied to the case of P. donghaiense Lu et Goebel and CCMP1517 strain of P. dentatum Stein, no differences were detected between these two taxa with respect to cob mRNA editing pattern and only small differences equivalent to those between P. minimum populations were detected in terms of cob sequence. On the cob sequence‐ and editing‐based phylogenetic trees, P. donghaiense and P. dentatum CCMP1517 consistently clustered together at a position sister to P. minimum. The results suggest that cob, combined with its mRNA editing, can potentially be a useful delineator of Prorocentrum species, and that P. donghaiense and P. dentatum CCMP1517 are most likely the same species and both are closely related to P. minimum. 相似文献
19.
A molecular phylogenetic study of red algal parasites commonly found in the Northwestern Pacific and the Hawaiian Islands was undertaken. Four species, Benzaitenia yenoshimensis Yendo, Janczewskia hawaiiana Apt, J. morimotoi Tokida, and Ululania stellata Apt et Schlech (Ceramiales), are parasitic on rhodomelacean species belonging to the tribes Chondrieae and Laurencieae. Although Janczewskia and Ululania are classified in the same tribes as their host species, the taxonomic placement of Benzaitenia has been controversial. To infer the phylogenetic positions of these parasites and to clarify the relationships between the parasites and their hosts, phylogenetic analyses of partial nuclear SSU and LSU rRNA genes and the cox1 gene were performed. The SSU rRNA gene analyses clearly show that both Janczewskia species are positioned within the Laurencia s. str. clade with their host species, while Benzaitenia and Ululania are placed in the Chondrieae clade. According to these analyses, J. hawaiiana and U. stellata are not sister to their current hosts; in contrast, B. yenoshimensis and J. morimotoi are closely related to their current hosts. These data suggest that J. hawaiiana and U. stellata have likely evolved from species other than their current hosts and have switched hosts at some point in their evolutionary history. Likelihood ratio tests do not support the monophyly of J. hawaiiana and J. morimotoi, suggesting multiple origins of parasitism within Laurencia s. str. 相似文献
20.
Characteristics of an organism's life history are often good predictors of genetic diversity and genetic structure. We tested hypotheses about genetic structure and diversity in an intertidal alga based on life history and life form. Fucus spiralis L. is a perennial monoecious alga that is abundant on the shores of Maine. Reproduction in fucoids is highly sensitive to water motion, resulting in fertilization success close to 100%. Given these life history characteristics, we predicted genetic structure among populations to be high and genetic diversity within populations to be low. We used five microsatellite loci to analyze genetic structure and diversity in F. spiralis from four sites on each of two coastal points, Maine, USA. Observed heterozygosities were relatively low (0.23 to 0.56), and FIS estimates were usually significantly large, ranging from 0.021 to 0.476. This suggests that selfing and/or inbreeding may occur. Contrary to predictions, genetic differentiation between the two coastal points was insignificant. Moreover, few sites were genetically different from one another. Pairwise tests revealed complex patterns among sites. Genetic differentiation was not correlated with distance (P>0.05). Life history characteristics are good predictors of genetic diversity but not of population genetic structure in F. spiralis. We suggest that long distance dispersal of F. spiralis via drifting algal rafts increases gene flow. In addition, low levels of genetic structure may arise due to episodic recruitment or recent recolonization events. We discuss the implications of our results in terms of using life history characteristics as predictors of genetic diversity and structure in algae. 相似文献