共查询到20条相似文献,搜索用时 62 毫秒
1.
Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming 总被引:7,自引:0,他引:7
BACKGROUND AND AIMS: Climate projections predict drier and warmer conditions in the Mediterranean basin in the next decades. The possibility of such climatic changes modifying the growth of two Mediterranean species, Erica multiflora and Globularia alypum, which are common components of Mediterranean shrublands, was assessed. METHODS: A field experiment was performed from March 1999 to March 2002 to prolong the drought period and to increase the night-time temperature in a Mediterranean shrubland, where E. multiflora and G. alypum are the dominant species. Annual growth in stem diameter and length of both species was measured and annual stem biomass production was estimated for 1999, 2000 and 2001. Plant seasonal growth was also assessed. KEY RESULTS: On average, drought treatment reduced soil moisture 22 %, and warming increased temperature by 0.7-1.6 degrees C. Erica multiflora plants in the drought treatment showed a 46 % lower annual stem elongation than controls. The decrease in water availability also reduced by 31 % the annual stem diameter increment and by 43 % the annual stem elongation of G. alypum plants. New shoot growth of G. alypum was also strongly reduced. Allometrically estimated biomass production was decreased by drought in both species. Warming treatment produced contrasting effects on the growth patterns of these species. Warmer conditions increased, on average, the stem basal diameter growth of E. multiflora plants by 35 %, raising also their estimated stem biomass production. On the contrary, plants of G. alypum in the warming treatment showed a 14 % lower annual stem growth in basal diameter and shorter new shoots in spring compared with controls. CONCLUSIONS: The results indicate changes in the annual productivity of these Mediterranean shrubs under near future drier and warmer conditions. They also point to alterations in their competitive abilities, which could lead to changes in the species composition of these ecosystems in the long term. 相似文献
2.
We tested the effect of forecasted soil drought and warming climate conditions for the next decades on emission rates of isoprenoids
by mediterranean shrublands. We measured isoprenoid emissions by whole dominant mediterranean woody plants (Erica multiflora L. and Globularia alypum L.) inhabiting the studied shrublands. Monoterpene emissions were detected in both species, but isoprene was emitted only
by E. multiflora. Maximum emission rates were found during the hottest periods (except for G. alypum, in which they occurred in autumn), and minimum emission rates in winter in E. multiflora. Terpene emission rates ranged from 0.08 μg/(g dry wt h) in winter in E. multiflora to 8.8 μg/(g dry wt h) in G. alypum in autumn. In E. multiflora, the terpene emission rates decreased in response to soil drought only in summer, but increased in response to warming in
spring and autumn. Isoprene emissions ranged from 0.1 μg/(g dry wt h) in spring to 4.4 μg/(g dry wt h) in summer. The effect
of the treatments was only detected in autumn when soil drought and warming had a negative effect on isoprene emission rates.
These data might improve our knowledge of isoprenoid emissions at the canopy level and in response to climate change, soil
drought, or warming.
Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 1, pp. 35–45.
The text was submitted by the authors in English. 相似文献
3.
Francisco Lloret 《植被学杂志》1998,9(3):417-430
Abstract. Seedling establishment and survival of the main woody species of early-successional shrubland in northeastern Spain were studied from 1992 to 1995 with emphasis on the importance of vegetation cover (existence of open areas and the situation beneath the plant canopy) and microhabitat (occurrence of stones, litter and bare soil). In the absence of fire, vegetation cover (measured at a scale of 30cm × 30 cm) was not correlated with seedling emergence of most species, nor with growth and survival of seedlings up to one year old. Seedlings older than one year showed a similar pattern: their density was not significantly different in both kinds of habitats. The emergence of seedlings was mainly associated with the presence of mature plants – which can provide seeds – and with the absence of unsuitable microhabitats (large stones, deep litter and bare soil). In April 1994 a wildfire burned the study area. This enabled a study of the pattern of post-fire establishment. After the wildfire, seedling emergence of several species increased and most species produced seedlings with higher survival and growth rates than in the period before the fire. Pre-fire cover, however, did not show significant effects on post-fire seedling dynamics in most cases. 相似文献
4.
JORDI SARDANS JOSEP PEÑUUELAS MARC ESTIARTE PATRICIA PRIETO 《Global Change Biology》2008,14(10):2304-2316
We investigated the effects of warming and drought on C and N concentrations, nitrogen use efficiency (NUE), and C and N accumulation in different ecosystem compartments. We conducted a 6-year (1999–2005) field experiment to simulate the climate conditions projected by IPCC models for the coming decades in a Mediterranean shrubland. We studied the two dominant species, Globularia alypum and Erica multiflora, and an N-fixing species, Dorycnium pentaphyllum, also abundant in this shrubland. Warming (1 °C) decreased N leaf concentrations by 25% and increased N stem concentrations by 40% in G. alypum. Although warming changed the available ammonium in soil in some seasons, it did not increase total soil N contents. Drought (19% average reduction in soil moisture) decreased leaf N concentrations in the two dominant shrub species, E. multiflora and G. alypum by 16% and 19%, respectively, and increased stem N concentrations by 56% and 40%, respectively. Neither warming nor drought changed the leaf N concentrations in the N-fixing species D. pentaphyllum, although warming increased stem N concentration by 9%. In G. alypum, the increase of stem N concentrations contributed to the observed increase of N accumulation in stem biomass in drought treatments with respect to control plots (8 kg N ha−1). Neither warming nor drought changed NUE in the period 1999–2005. Warming increased soil organic C relative to drought. The effects of warming and drought on C and N concentrations, on N accumulation and on leaf/stem N distribution were not the result of dilution or concentration effects produced by changes in biomass accumulation. Other factors such as the changes in soil N availability, photosynthetic capacity, and plant internal C and N remobilization must be involved. These changes which differed depending on the species and the plant tissue show that the climate change projected for the coming decades will have significant effects on the C and N cycle and stoichiometry, with probable implications for ecosystem structure and function, such as changes in plant–herbivore relationships, decomposition rates or community species composition. 相似文献
5.
Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland 总被引:1,自引:0,他引:1
We conducted a field experiment simulating the warming and drought in a Mediterranean shrubland dominated by Erica multiflora and Globularia alypum with the aim to simulate the next future climate conditions predicted by the IPCC and ecophysiological models. As P is frequently a limiting nutrient in Mediterranean ecosystems, we investigated the drought and warming effects on soil phosphatases activities, soil P contents and availability, litter and leaf P concentration, and the capacity of this community to maintain soil P reserves and retain this nutrient in the ecosystem. Warming treatment increased soil and air temperature (an average of 1°C) and drought treatment decreased soil water content in one of the seasons analysed (28% in autum 2004). Warming increased (68%) the activities of soil acid phosphatases in summer and alkaline phosphatase activity (22%) in spring 2004, and increased P concentrations in E. multiflora. Instead, warming decreased P concentrations in litterfall of this same species, E. multiflora, and soil HCO3-extractable Pi (Olsen-Pi) in some seasons, decreasing total P soil concentration (37%) after 6 years of treatment. The drought treatment did not change soil phosphatase activities, nor available Pi. The effects of climate change on soil P dynamics in Mediterranean areas will thus be strongly dependent on whether the main variable involved in the local change is warming or drought. If warming is the main change without significant changes in water availability, the increases of biological activity can accelerate plant growth, P capture by plants and increase soil-phosphatase activity, altogether decreasing P contents in soil. If drought is the main change, a reduction in P demands by plants is expected, increasing P stocks in soils. 相似文献
6.
7.
Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland 总被引:3,自引:0,他引:3
A field experiment involving drought and warming manipulation was conducted over a 6-year period in a Mediterranean shrubland
to simulate the climate conditions projected by IPCC models for the coming decades (20% decreased soil moisture and 1°C warming).
We investigated P and K concentration and accumulation in the leaves and stems of the dominant species, and in soil. Drought
decreased P concentration in Globularia alypum leaves (21%) and in Erica multiflora stems (30%) and decreased K concentration in the leaves of both species (20% and 29%, respectively). The general decrease
of P and K concentration in drought plots was due to the reduction of soil water content, soil and root phosphatase activity
and photosynthetic capacity that decreased plant uptake capacity. Warming increased P concentration in Erica multiflora leaves (42%), but decreased it in the stems and leaf litter of Erica multiflora and the leaf litter (33%) of Globularia alypum, thereby demonstrating that warming improved the P retranslocation and allocation from stem to leaves. These results correlate
with the increase in photosynthetic capacity and growth of these two dominant shrub species in warming plots. Drought and
warming had no significant effects on biomass P accumulation in the period 1999–2005, but drought increased K accumulation
in aboveground biomass (10 kg ha−1) in Globularia alypum due to the increase in K concentration in stems. The stoichiometric changes produced by the different responses of the nutrients
led to changes in the P/K concentration ratio in Erica multiflora leaves, stems and litter, and in Globularia alypum stems and litter. This may have implications for the nutritional value of these plant species and plant–herbivore relationships.
The effects of climate change on P and K concentrations and contents in Mediterranean ecosystems will differ depending on
whether the main component of change is drought or warming. 相似文献
8.
9.
Daniel García 《植被学杂志》2001,12(6):839-848
Abstract. The recruitment of the relict shrub Juniperus communis on a mountain in SE Spain was studied during the period 1994–1998. The main objective was to determine both the quantitative and qualitative effects of bird dispersal on seedling establishment. Seed removal by birds, seed rain, post‐dispersal seed predation, germination, and seedling emergence and survival were analysed in different microhabitats. Birds removed 53 ‐ 89% of the seeds produced by plants. Seed rain was spatially irregular as most seeds accumulated near stones used by birds as perches and below mother plants while a few seeds were dropped in wet meadows and open ground areas. Post‐dispersal seed predation by rodents affected < 10% of dispersed seeds but varied significantly among microhabitats. Only 3.6 ‐ 5.5% of dispersed seeds appeared viable, as many seeds had aborted or showed wasp damage. Seeds germinated in the second and third springs after sowing, reaching a germination percentage of 36%. Seedling emergence was concentrated in wet meadows. Seedling mortality was high (75–80%), but significantly lower in wet meadows, the only microhabitat where seedlings could escape from summer drought, the main mortality cause. Seed abortion, germination and seedling mortality proved to be the main regeneration constraints of J. communis on Mediterranean mountains. Birds exerted a strong demographic effect, although their qualitative effect was limited by abiotic factors which caused the pattern of seed rain to differ from the final pattern of recruitment between microhabitats. 相似文献
10.
Montse del Cacho Marc Estiarte Josep Peñuelas Francisco Lloret 《Population Ecology》2013,55(2):277-289
We aimed to assess the impact of warmer and drier climate change conditions on the seed rain and seedling establishment of Globularia alypum L. and Erica multiflora L., two dominant species in Western coastal Mediterranean shrublands. We performed a non-intrusive field experiment in which we increased the night-time temperatures and excluded spring and autumn rainfall. We monitored the seed rain over 5 years and the seedling recruitment over 9 years on these experimental plots. Seed rain of E. multiflora was enhanced by warming treatment in relation to control, and higher annual rainfall, while seed rain of G. alypum was increased by drought treatment in relation to control, dry years and higher minimum annual temperature. Annual rainfall enhanced the seedling emergence of both species, which also positively correlated with annual mean temperatures. Drought treatment significantly decreased seedling emergence for both species, which was higher in open areas than below vegetation cover. The seedling survival of both species diminished at closer distances to competing neighbours, and in G. alypum seedling survival was higher with lower annual mean temperatures and higher annual rainfall, but also in drought treatment, which have experienced vegetation cover decline. The study confirms that the increasing aridity in Mediterranean ecosystems would constrain the early stages of development in typical co-occurring shrubs. However, there are contrasting responses to climatic conditions between species recruitment, which might favour changes in vegetation through modification of species relative abundance. 相似文献
11.
Emmanuel N. Chidumayo 《Plant Ecology》2008,198(1):61-71
Seedling emergence from scarified seeds and mortality of different seedling cohorts of five African savanna woody species
(Acacia
polyacantha, A. sieberana, Bauhinia
thonningii, Dichrostachys
cinerea and Ziziphus
abyssinica) were studied under field conditions at a site in central Zambia. The study was conducted over a 4-year period, from 2003
to 2007. The objectives of the study were to determine climate factors that significantly influence seedling emergence rate
and mortality in order to assess likely responses of the studied species to a warmer climate. Mean seedling emergence rate
was 12% in D. cinerea and Z. abyssinica, 17% in B. thonningii, 47% in A. poyacantha and 62% in A. sieberana. Climate factors did not significantly affect seedling emergence in A. sieberana while temperature significantly influenced seedling emergence rate in the other species. Under a 1° warmer climate, seedling
emergence rate was predicted to decline in A. polyacantha, B. thonningii and Z. abysssinica but is likely to increase slightly in D. cinerea. Time of seedling emergence during the wet season did not appear to affect seedling survival. Temperature also significantly
influenced seedling mortality in all the studied species such that under a warmer climate, mortality was predicted to increase
in A. sieberana and D. cinerea but decrease in A. polyacantha, B. thonningii and Z. abyssinica. As the studied species exhibited differential optimum temperature conditions for seedling emergence and seedling survival,
they are likely to respond to climate warming in different but predictable ways. The results of the study are useful to forest
management and development of climate change adaptation strategies in southern Africa. 相似文献
12.
沙埋对六种沙生植物种子萌发和幼苗出土的影响 总被引:19,自引:1,他引:19
研究了沙埋对科尔沁沙地6种优势植物的种子萌发和幼苗出土的影响.进行0.2、4、6、8、10和12cm等7个深度沙埋处理.结果表明,在不同沙埋处理时,沙蓬萌发差异显著。而差不嘎蒿2锄埋深与其他埋深的发芽差异显著,其他4种植物0cm埋深与其他埋深的发芽差异显著;沙埋对所有植物幼苗出土均有显著影响,埋深增加,出苗率减小;繁殖体大的物种与繁殖体小的物种相比,能从更深沙层中出苗,幼苗出土最大深度排序为苦参>东北木蓼≥沙蓬>山竹子>雾冰藜>差不嘎蒿. 相似文献
13.
Question: How do seed germination and subsequent seedling survival of O. semicastrata (Hance forma litchiifolia How) vary with respect to distance from parent trees and conspecific density in different types of tropical forest? Are there effects of soil biota on O. semicastrata that systematically depend on distance from parent trees and conspecific density? Do soil pathogens differently affect survival of O. semicastrata in different types of tropical forest? Location: Tropical lowland rain forest and tropical montane rain forest in Jianfengling National Nature Reserve, Hainan Island, China. Methods: Individual adult O. semicastrata trees were selected in lowland rain forest and montane rain forest. Soil was collected at a distance of 0‐5 m or 15‐20 m from the parent tree. Soil samples from each distance were combined into a bulk sample. Half of the soil sample was sterilized by autoclaving. Surface‐sterilized seeds were then added to the soil material in shade‐houses at both forests. Results: Germination of O. semicastrata seeds at low‐ or high‐seed density was barely affected by the sterilization procedure. In both forests, seedlings grown in non‐sterilized soil collected close to parent trees had significantly higher mortality compared to those in sterilized soil. In contrast, seedling survival with soil collected far from parent trees was not affected by the soil sterilization procedure. Conclusions: Host‐specific pathogens concentrated in the soil around parent trees may regulate community structure of tropical trees at the stage of seedling development. 相似文献
14.
Effects of sand burial depth and seed mass on seedling emergence and growth of Nitraria sphaerocarpa
A greenhouse experiment was conducted to test the effects of sand burial depth and seed mass on seedling emergence and growth of Nitraria sphaerocarpa. Seeds of Nitraria sphaerocarpa were sorted into three size-classes (large, medium, small) and artificially buried at 0, 1, 2, 3, 4, 5 and 6 cm depths in plastic pots filled with unsterilized sand. In the seven treatments, the percent emergence, seedling mass and seedling height, significantly affected by both burial depth and seed size, were highest at the optimal burial depth of 2 cm burial depth, and decreased with increasing burial depth in each seed size-class. Although seedling mass was usually greatest for large seeds and least for small seeds at each burial depth, little difference was observed in seedling height at shallow burial depths of 0–3 cm. In each seed size-class, with increasing burial depth, both root-mass ratio and aboveground stem-mass ratio decreased, while belowground stem-mass ratio increased. In each burial depth, with decreasing seed size, belowground stem-mass ratio increased, while root-mass ratio decreased. 相似文献
15.
16.
Luis Matías Lorena Gómez-Aparicio Regino Zamora Jorge Castro 《Perspectives in Plant Ecology, Evolution and Systematics》2011,13(4):277
Coexisting plant species usually differ in resource requirements, which may also vary within species at successive demographic stages. Such differences become extremely important during the early life stages, since these are the most critical phases in woody-species recruitment, they depend heavily on resources, and they may determine future community composition. Under a global-change scenario, where climatic conditions, nutrient availability, and habitat characteristics are expected to be altered, it is difficult to predict the way in which plant recruitment will be affected. To understand the impact of different global-change drivers on community recruitment, we sowed a set of species representative of the different successional groups of a complete Mediterranean woody community under field conditions, and studied their emergence, growth, and survival along the main resource gradients of light, water, and nutrients. The light and nutrient gradients followed the natural range of conditions in the study area, but water availability was manipulated to simulate three contrasting climatic scenarios: wetter, drier, and current conditions. Structural equation modelling was used to provide a comprehensive analysis of the factors and relations governing plant recruitment. Overall, seedling emergence was determined directly by light; growth was determined by light and summer soil moisture; and survival was determined by summer soil moisture. Light was the main factor indirectly affecting the demographic stages of all species. However, the magnitude of the direct and indirect relationships varied among species. Particularly, species differed in their response to the expected drier climatic conditions, some (e.g. Pinus sylvestris, Acer opalus) being much more vulnerable than others (e.g. Cytisus scoparius, Salvia lavandulifolia). These differential responses could translate as major shifts in the structure of the overall plant community. Our results support the idea that the analysis of complex relations among essential resources is critical for accurate forecasts of the impact of climate change on community dynamics. 相似文献
17.
18.
Abstract. In the mountains of northern Spain, patches dominated by Calluna vulgaris are scarce and they may disappear or change as a result of continued lack of management and possibly increasing nutrient availability through atmospheric deposition. The effects in the soil properties and in the composition of Calluna vulgaris and Erica tetralix shoots on heathlands dominated by Calluna and Erica subjected to fertilization and experimental cutting were studied in three mountain passes in northern Spain. A total of 90 1‐m2 plots received different combinations of cutting and twice the estimated atmospheric deposition of nitrogen (5.6 g.m?2.yr?1) as ammonium nitrate. One of the dominant ericaceous species (Calluna and Erica) was selectively cut by hand at ground level and their nitrogen shoot content were compared in the presence or absence of the other. Treatments were carried out in April 1998. In each plot one soil sample was taken in the original situation and 12, 24 and 36 months after the treatments. Soil properties such as organic matter, total nitrogen, available phosphorus and pH were determined. In every plot five shoots of Calluna and Erica were also taken to analyse total nitrogen content in the original situation and 12, 24 and 36 mo after the treatments. Nitrogen addition does not necessarily lead to increased levels in the soil, and a clear pattern was not found in the three areas. A gradual decrease in available phosphorus content was detected in the three areas until two years after treatment, although values tend to recover in two of the areas in the third study year. An increase in organic matter content was observed in all areas. It is concluded that increased nutrients alone, at twice the rate of the estimated current atmospheric deposition for the area, which is relatively low, will not alter significantly the soil characteristics of the mountain heathland stands. A clear increase in plant N‐content is observed in the fertilized plots in comparison with the non‐fertilized ones and Calluna always has higher nitrogen content than Erica. This increase is most pronounced one year after the treatments started in one of the areas and after two years in the other two areas. In some cases the elimination of one species is seen to favour nitrogen increase in the other. 相似文献
19.
Four independent experiments were designed to investigate the effects of the pericarp on seed imbibition, dehydration, germination,
seedling establishment, and seed longevity in the field in seeds of Hedysarum scoparium Fisch. et Mey. The results showed that the presence of the pericarp decreased seed imbibition rates in the first 6 h, but
the seeds attained significantly higher final water content after 24 h of soaking. The pericarp caused seed dormancy, and
removal of the pericarp improved the germination percentage to 90 from 44%. In the pot experiment, where the level of moisture
was maintained at field capacity (control), seeds with the pericarp removed had significantly improved seedling establishment.
However, no statistical differences were observed in seedling establishment when the experiment was repeated under dry conditions
at 40% of the field water capacity. The seedling biomass derived from seeds without the pericarp was much higher in the control
but the trend was reversed under dry conditions. For seed longevity, 2 months burial in the field killed almost all seeds
without the pericarp, while more than 70% of the seeds with the pericarp intact remained viable. These results indicated that
the pericarp was beneficial for seedling establishment and seed longevity in arid environments. The results of this study
may have practical application in grassland restoration in dry areas, especially for aerial seeding, which has been extensively
used in the northern part of China. 相似文献
20.
Abstract. We examined the response of tree seedling emergence and survival to the dieback of Sasa and canopy gap formation in an old‐growth forest near Lake Towada, northern Japan. Synchronous death of Sasa occurred in 1995. We established four types of sampling sites differing in forest canopy conditions (Closed or Gap) and Sasa status (Dead or Live). Gap‐Dead sites had the highest light levels and the greatest fluctuation in soil temperatures. The death of Sasa alone facilitated the emergence (Acer japonicum, Fagus crenata, Fraxinus lanuginosa, and Tilia japonica) and survival (Acanthopanax sciadophylloides, F. crenata, F. lanuginosa, Kalopanax pictus, and Sorbus commixta) of species with a seedling bank strategy. Cercidiphyllum japonicum grew at all sites at a higher density than other species, but survived well only in Gap‐Dead sites. This behaviour was associated with a seed rain strategy. The additive effects of Sasa death and canopy gap formation promoted seedling emergence of pioneer tree species (Betula maximowicziana, Lindera umbellata, and Magnolia obovata), probably through break of dormancy by the large temperature fluctuation. In addition, the scarcity of advance regeneration in canopy gaps due to Sasa cover facilitates the regeneration of pioneer species. The dominance and dieback cycle of Sasa contributes to species diversity in this forest. 相似文献