首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have undertaken a comprehensive, molecular‐assisted alpha‐taxonomic examination of the rhodophyte family Liagoraceae sensu lato, a group that has not previously been targeted for molecular studies in the western Atlantic. Sequence data from three molecular markers indicate that in Bermuda alone there are 10 species in nine different genera. These include the addition of three genera to the flora — Hommersandiophycus, Trichogloeopsis, and Yamadaella. Liagora pectinata, a species with a type locality in Bermuda, is phylogenetically allied with Indo‐Pacific species of Hommersandiophycus, and the species historically reported as L. ceranoides for the islands is morphologically and genetically distinct from that taxon, and is herein described as L. nesophila sp. nov. Molecular sequence data have also uncovered the Indo‐Pacific L. mannarensis in Bermuda, a long‐distance new western Atlantic record. DNA sequences of Trichogloeopsis pedicellata from the type locality (Bahamas) match with local specimens demonstrating its presence in Bermuda. We described Yamadaella grassyi sp. nov. from Bermuda, a species phylogenetically and morphologically distinct from the generitype, Y. caenomyce of the Indo‐Pacific. Our data also indicated a single species each of Ganonema, Gloiocallis, Helminthocladia, Titanophycus, and Trichogloea in the flora.  相似文献   

2.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

3.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

4.
Halimeda macroloba is a common widespread and morphologically variable species in the Indo‐Pacific Ocean. A series of morphometric data (16 morphological and 46 anatomical variables) and the chloroplast‐encoded tuf A gene were examined to explore the morphological and genetic variations within the species and to better determine species boundaries in H. macroloba in Thai waters. Moreover, the environmental conditions, which may affect morphological variations in H. macroloba, especially of Haplotype I were examined. Our results showed that H. macroloba has more morpho‐anatomical variability and broader species boundaries than previously thought in several characters: holdfast type, segment shape and size, node height with differences in pore size, the presence of two additional patterns of peripheral utricle as seen in surface view, and additional layers of utricles (up to seven layers). Additionally, two new variable characteristics have been reported for the first time, i.e. shape and margin of peripheral utricles. Water depth and light correlated with thallus morphology, larger thalli and segments with a greater number of utricle layers were associated with subtidal plants, while smaller thalli and segments were found in the intertidal or high light intensity areas. The high plasticity of this species may explain why in the Indo‐Pacific Ocean this species is common and dominant.  相似文献   

5.
6.
The calcified green algal genus Halimeda is one of the most ecologically important but morphologically diverse seaweeds in sub-tropical and tropical waters. Because of its high morphological plasticity, the identification of Halimeda species based on morphological characters is challenging without the assistance of molecular analysis. To date, the species diversity of Halimeda in Taiwan and its overseas territories has not been investigated with the assistance of DNA sequencing, and this taxonomic knowledge gap should be filled. The present study initiates a systematic examination of the species diversity and distribution of Halimeda in Taiwan, Spratly Island, and Dongsha Atoll in the South China Sea, using DNA sequence data (plastid tufA gene and rbcL) and morphological data. Our DNA analyses revealed the presence of 10 Halimeda species (Halimeda borneensis, Halimeda cylindracea, Halimeda discoidea, Halimeda distorta, Halimeda macroloba, Halimeda minima, Halimeda opuntia, Halimeda renschii, Halimeda taiwanensis sp. nov., and Halimeda velasquezii) in the waters around Taiwan, Spratly Island, and Dongsha Atoll. The majority of the species could be readily distinguished by their morphological and anatomical characters. The proposed new species, H. taiwanensis, was differentiated not only by our algorithmic species delimitation analyses (statistical parsimony network analysis and automated barcode gap discovery), but also by its morphological features. The proposed new species differs from two externally resembled species, H. cuneata and H. discoidea, in having an undulated segment margin, the complete fusion of medullary siphons at the node, the lack of segment stalk, and the presence of a large primary utricle. Here, we present the up-to-date taxonomic account, molecular diversity, and geographical distribution of Halimeda spp. in Taiwan and associated areas of the South China Sea. Environmental factors that might drive the occurrence and latitudinal distribution of the species are also discussed.  相似文献   

7.
8.
9.
Molecular systematic studies have changed the face of algal taxonomy. Particularly at the species level, molecular phylogenetic research has revealed the inaccuracy of morphology‐based taxonomy: Cryptic and pseudo‐cryptic species were shown to exist within many morphologically conceived species. This study focused on section Rhipsalis of the green algal genus Halimeda. This section was known to contain cryptic diversity and to comprise species with overlapping morphological boundaries. In the present study, species diversity within the section and identity of individual specimens were assessed using ITS1–5.8S–ITS2 (nrDNA) and rps3 (cpDNA) sequence data. The sequences grouped in a number of clear‐cut genotypic clusters that were considered species. The same specimens were subjected to morphometric analysis of external morphological and anatomical structures. Morphological differences between the genotypic cluster species were assessed using discriminant analysis. It was shown that significant morphological differences exist between genetically delineated species and that allocation of specimens to species on the basis of morphometric variables is nearly perfect. Anatomical characters yielded better results than external morphological characters. Two approaches were offered to allow future morphological identifications: a probabilistic approach based on classification functions of discriminant analyses and the classical approach of an identification key.  相似文献   

10.
We sequenced the small subunit rDNA and internal transcribed spacer region of Gracilariaceae from the tropical Atlantic and Pacific, with emphasis on flattened or compressed species. Sequence comparisons confirmed three main lineages of Gracilariaceae: Curdiea/Melanthalia, Gracilariopsis/Gracilariophila, and Gracilaria. The Curdiea/Melanthalia diverged early in the family. Gracilariopsis was paraphyletic, because at least one Gracilariophila species evolved from it. The Atlantic Gracilariopsis were monophyletic and separated from the Pacific lineages. The Gracilaria included all species referable to its own species and to Hydropuntia, which was paraphyletic, formed by distantly related lineages. The new combination Gracilaria pauciramosa (N. Rodríguez Ríos) Bellorin, M. C. Oliveira et E. C. Oliveira is proposed for Polycavernosa pauciramosa N. Rodríguez Ríos. Recognition of subgenera within Gracilaria, based on spermatangial arrangement, was not supported. Instead, infrageneric groups were delineated by geographic origins and combinations of reproductive characters. Most Pacific species with either “textorii” or “verrucosa” type spermatangia were deeply separated from Atlantic species. Within the Atlantic Gracilaria, a lineage encompassing mostly tropical cylindrical species with “henriquesiana” type spermatangia and distinctive cystocarp anatomy was recognized. A lineage was also retrieved for cold water stringy species with verrucosa type spermatangia. Several species from the western Atlantic are closely related to Gracilaria tikvahiae McLachlan with nearly identical morphology. On the other hand, most flattened species from the tropical Atlantic were closely related despite their diverse morphologies. The interpretation of our data in addition to the literature indicates that more populations from the Indo‐Pacific must be studied before a general picture of Gracilariaceae evolution can be framed.  相似文献   

11.
This study deals with the mobile fauna living associated with the turfs of three Halimeda species [H. incrassata, H. opuntia (three forms) and H. macroloba] from the Tiahura Reef complex. Ten 0.05 m2 test areas of each Halimeda form have been randomly sampled from each geomorphological reef unit in order to obtain the specific abundance and biomass of different faunistic groups and species living within Halimeda populations. Then the raw data have been classified using the correspondence factor analysis to highlight the relationships between faunistic groups, or species, and the different Halimeda forms studied. The distributional patterns of the faunal communities seems to be controlled by the morphological features of the host-alga. The complex arborescent structure of the rhyzophytic H. incrassata species shelters fauna three times higher in abundance than other Halimeda heads. This fauna is mostly composed of a highly rich community of microcrustaceans and a very diversified community of Syllidae polychaetes. H. macroloba living on the outer reef flat retains a lot of small Nereidae polychaetes and a rich microgastropod assemblage. Dense H. opuntia tussocks (type A) on the fringing-reef and isolated H. opuntia fronds of pendulous chains (type B) on the barrier reef as well as beds of scattered H. opuntia (type C) on the outer reef flat provide environment for larger animals, and according to their zone of life, they retain very different faunal associations. Some ophiuroids, and some fish, collected in H. opuntia A and C, are newly reported from the Society Islands, French Polynesia, and the Pacific province. One Brachyurid species is presumably undescribed.  相似文献   

12.
Phylogenetic relationships among 20 nominal species of tropical lutjanine snappers (Lutjanidae) (12 from the western Atlantic, one from the eastern Pacific, and seven from the Indo‐Pacific) were inferred based on 2206 bp (712 variable, 614 parsimony informative) from three protein‐coding mitochondrial genes. Also included in the analysis were DNA sequences from two individuals, identified initially as Lutjanus apodus, which were sampled off the coast of Bahia State in Brazil (western Atlantic), and from three individuals labelled as ‘red snapper’ in the fish market in Puerto Armuelles, Panama (eastern Pacific). Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported monophyly of all lutjanines sampled and the hypothesis that western Atlantic lutjanines are derived from an Indo‐Pacific lutjanine lineage. The phylogenetic hypothesis also indicated that oceans where lutjanines are distributed (western Atlantic, eastern Pacific, and Indo‐Pacific) are not reciprocally monophyletic for the species distributed within them. There were three strongly supported clades that included all western Atlantic lutjanines: one included six species of Lutjanus from the western Atlantic, two species of Lutjanus from the eastern Pacific, and the monotypic genera Rhomboplites and Ocyurus (western Atlantic); one that included three, probably four, species of Lutjanus in the western Atlantic; and one that included Lutjanus cyanopterus (western Atlantic), an unknown species of Lutjanus from the eastern Pacific, and three species of Lutjanus from the Indo‐Pacific. Molecular‐clock calibrations supported an early Miocene diversification of an Indo‐Pacific lutjanine lineage that dispersed into the western Atlantic via the Panamanian Gateway. Divergent evolution among these lutjanines appears to have occurred both by vicariant and ecological speciation: the former following significant geographic or geological events, including both shoaling and closure of the Panamanian Gateway and tectonic upheavals, whereas the latter occurred via phenotypic diversification inferred to indicate adaptation to life in different habitats. Taxonomic revision of western Atlantic lutjanines appears warranted in that monotypic Ocyurus and Rhomboplites should be subsumed within the genus Lutjanus. Finally, it appears that retail mislabelling of ‘red snapper’ in commercial markets extends beyond the USA. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 915–929.  相似文献   

13.
The tropical green algal genus Halimeda is one of the best studied examples of pseudo-cryptic diversity within the algae. Previous molecular and morphometric studies revealed that within Halimeda section Rhipsalis, Halimeda incrassata included three pseudo-cryptic entities and that the morphological boundaries between H. incrassata and Halimeda melanesica were ill-defined. In this paper, the taxonomy of H. incrassata is revised: two pseudo-cryptic entities are described as new species, Halimeda kanaloana and Halimed heteromorpha, while H. incrassata is redefined to encompass a single, monophyletic entity. Similarities and differences between the three species and H. melanesica are discussed. Monophyly of H. heteromorpha, which was questioned in a former study, is reinvestigated using sets of 32 ITS1–ITS2 and 21 plastid rps3 sequences and various alignment and inference methods. The phylogenetic relationships within Halimeda section Rhipsalis are inferred from nuclear 18S–ITS1–5.8S–ITS2 and concatenated plastid sequences (tufA & rpl5–rps8–infA) and interpreted in a biogeographic context.  相似文献   

14.
Application of phylogenetic species recognition to morphologically recognized species in the genera Cystoseira Agardh and Halidrys Lyngbye on North American west coasts revealed little genetic variation despite a remarkable degree of morphological variation currently used to recognize and delineate species. Whereas morphological characteristics allow recognition of two genera, four morphological species and three informal forms, maximum genetic variation among them was similar to that characteristic of the intraspecific level in European congeners and other Fucales. Among morphological species and forms, nucleotide variation in a combined 26S (large subunit (LSU)) and internal transcribed spacer (ITS) ribosomal DNA analysis was below 3% while it was 1% or less for the RUBISCO spacer of the chloroplast DNA. Comparison of the LSU data to available data for European congeners showed that the genera Cystoseira and Halidrys are not monophyletic and that the previously recognized Cystoseiraceae should be included within the family Sargassaceae. These observations suggest that the current taxonomy for the Sargassaceae fails to reflect evolutionary history because Atlantic and Pacific Cystoseira and Halidrys appear to have arrived at similar morphologies independently. Our results indicate a comparatively recent establishment on the west coast of North America of a sargassacean progenitor whose descendant taxa have experienced limited genetic divergence and are characterized by a high capacity for phenotypic variation despite their overall genetic similarity.  相似文献   

15.
The brown algal genus Padina (Dictyotales, Phaeophyceae) is distributed worldwide in tropical and temperate seas. Global species diversity and distribution ranges, however, remain largely unknown. Species‐level diversity was reassessed using DNA‐based, algorithmic species delineation techniques based on cox3 and rbcL sequence data from 221 specimens collected worldwide. This resulted in estimates ranging from 39 to 61 putative species (ESUs), depending on the technique as well as the locus. We discuss the merits, potential pitfalls, and evolutionary and biogeographic significance of algorithmic species delineation. We unveil patterns whereby ESUs are in all but one case restricted to either the Atlantic or Indo‐Pacific Ocean. Within ocean basins we find evidence for the vast majority of ESUs to be confined to a single marine realm. Exceptions, whereby ESUs span up to three realms, are located in the Indo‐Pacific Ocean. Patterns of range‐restricted species likely arise by repeated founder events and subsequent peripatric speciation, hypothesized to dominate speciation mechanisms for coastal marine organisms in the Indo‐Pacific. Using a three‐gene (cox3, psaA and rbcL), relaxed molecular clock phylogenetic analysis we estimated divergence times, providing a historical framework to interpret biogeographic patterns.  相似文献   

16.
The bottlenose dolphin, genus Tursiops, is cosmopolitan occurring in tropical and temperate regions, with morphological variation between and within different oceans. Since the genus' taxonomy has been under discussion for a long time, this work aimed at analyzing the cranial variability of T. truncatus from different regions of the world. Geometric Morphometrics analyses were performed in 201 skulls of adult specimens, on dorsal, ventral, and lateral views, from the Eastern North Pacific, Eastern North Atlantic, Eastern South Atlantic, and Western South Atlantic oceans. The results indicate differences between individuals that inhabit the Atlantic and Pacific oceans. Within the Atlantic Ocean, there is an evident longitudinal differentiation of specimens from the eastern and western regions. A latitudinal separation was also observed, considering specimens from the North and South Atlantic Ocean. In the Western South Atlantic statistical differences were found between two morphological groups, identified as T. gephyreus (sensu Lahille, 1908) and T. truncatus, and the cross-validation presented 98% as minimum confidence for correct classification of these two groups. The present study provides strong morphological support to consider these two lineages as separate species.  相似文献   

17.
Pontomyia Edwards, 1926 (Diptera: Chironomidae) is a genus of exclusively marine flightless midges. There are four described species from the Indo‐Pacific, and one undescribed species known only from females, pupal skins, and larvae from the Atlantic/Caribbean. They are poorly known owing to their small size (~1.0 mm), extremely short adult life (< 3 h), and unusual habitat for an insect (coastal lagoons, bays, or rock pools). We reviewed scattered literature on their biology and systematics, presented photomicrographs of the male hypogium, and updated the geographic distribution of each species. We carried out the first molecular study to elucidate relationships among and within three of the species. Results from our four‐gene phylogenetic reconstruction using combined gene tree and species tree approaches showed that Pontomyia natans, Pontomyia oceana, and Pontomyia pacifica are each well‐supported clades, with P. natans as sister to P. oceana + P. pacifica. Genetic distances based on mitochondrial cytochrome oxidase I are extraordinarily large within P. natans and P. pacifica, which suggests that they may be cryptic species complexes. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 443–456.  相似文献   

18.
Trachinocephalus, a formerly monotypic and nearly circumtropical genus of lizardfishes, is split into three valid species. Trachinocephalus gauguini n. sp. is described from the Marquesas Islands and is distinguished from the two other species in the genus by having a shorter snout, a narrower interorbital space, larger eye and modally fewer anal‐fin and pectoral‐fin rays. The distribution of Trachinocephalus myops (type species) is restricted to the Atlantic Ocean and the name Trachinocephalus trachinus is resurrected for populations from the Indo‐West Pacific Ocean. Principal component analyses and bivariate plots based on the morphometric data differentiated T. gauguini from the other two species, but a substantial overlap between T. myops and T. trachinus exists. Phylogenetic evidence based on mtDNA COI sequences unambiguously supports the recognition of at least three species in Trachinocephalus, revealing deep divergences between the Atlantic Ocean, Indo‐West Pacific Ocean and Marquesas entities. Additional analyses of species delimitations using the generalized mixed Yule coalescent model and the Poisson tree processes model provide a more liberal assessment of species in Trachinocephalus, indicating that many more cryptic species may exist. Finally, a taxonomic key to identify the three species recognized here is provided.  相似文献   

19.
Aim We use the Stramonita haemastoma species complex (Muricidae) to investigate the geographic scale of speciation in a marine snail with a long pelagic larval duration (PLD) of 2–3 months and, consequently, high dispersal potential. We aim to: (1) delimit species within Stramonita, (2) discover the phylogenetic relationship among them, (3) map their distributions, and (4) infer the age and likely cause of speciation events. Location Tropical intertidal of the Atlantic and eastern Pacific Oceans. Methods We use one nuclear and two mitochondrial genes to construct a molecular phylogeny of the S. haemastoma species complex. We first test the monophyly of the genus and of the species complex, and then use statistical methods to delimit species within the complex. We incorporate information from museum collections and the literature to map distributions and to look for diagnostic morphological traits. We use fossils to date our phylogeny. Results The genus Stramonita is monophyletic and restricted to the tropical and warm‐temperate Atlantic and eastern Pacific oceans. The genus is composed of Stramonita delessertiana and six members of the S. haemastoma complex: S. haemastoma, Stramonita rustica, Stramonita floridana, Stramonita canaliculata, Stramonita biserialis and Stramonita brasiliensis (new species described herein). These species are supported by reciprocal monophyly in mitochondrial gene trees, together with independent evidence from morphology, distribution and the nuclear gene. The species are almost entirely allopatric, with only three instances of sympatry. Two species have unusually wide distributions, consistent with their long PLD; one of these is amphi‐Atlantic. Main conclusions Despite the long PLD of Stramonita, speciation has occurred within the Atlantic, both in response to barriers operating at the largest geographical scale (the width of Atlantic, but not the Amazon barrier) and at a smaller scale within the western Atlantic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号