首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microcystis aeruginosa Kütz. 7820 was cultured at 350 and 700 μL·L ? 1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom‐forming cyanobacterium. Doubling of CO2 concentration in the airflow enhanced its growth by 52%–77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light‐saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC‐saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3 ? levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 μL·L ? 1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3 ? concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.  相似文献   

2.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. showed pronounced differences in chemical composition and ability to maintain P fluxes. The cellular P:C ratio (Qp) and the surplus P:C ratio (Qsp) were higher in M. aeruginosa, indicating a lower yield of biomass C per unit of P. The subsistence quota (Qp) was 1.85 μg P·mg C?1in S. luetkemuellerii and 6.09 μg P·mg C?1in M. aeruginosa, whereas the respective Qp of P saturnted organisms (Qs) were 43 and 63 μg P·mg C?1. These stores could support four divisions in S. luetkemuellerii and three divisions in M. aeruginosa, which suggests that the former exhibited highest storage capacity (Qs/Q0). M. aeruginosa showed a tenfold higher activity of alkaline phosphatase than S. luetkemuellerii when P starved. The optimum N:P ratio (by weight) was 5 in S. luetkemuellerii and 7 in M. aeruginosa. The initial uptake of Pi pulses in the organisms was not inhibited by rapid (<1 h) internal feedback mechanisms and the short term uptake rote could be expressed solely as a function of ambient Pi. The maximum cellular C-based uptake rate (Vm) in P starved M. aeruginosa was up to 50 times higher than that of S. luetkemuellerii. It decreased with increasing growth rate (P status) in the former species and remained fairly constant in the latter. The corresponding cellular P-based value (Um= Vm/Qp) decreased with growth rate in both species and was about 10 times higher in P started M. aeruginosa than in S. luetkemuellerii. The average half saturation constant for uptake (Km) was equal for both species (22 μg P·L?1) and varied with the P status. S. luetkemuellerii exhibited shifts in the uptake rate of Pi that were characterized by increased affinity (Um/Km) at low Pi, concentrations (<4 μg P·L?1) compared to that at higher concentrations. The species thus was well adapted to uptake at low ambient Pi, but M. aeruginosa was superior in Pi uptake under steady state and transient conditions when the growth rate was lower than 0.75 d?1. Moreover, M. aeruginosa was favored by pulsed addition of Pi. M. aeruginosa relpased Pi at a higher rate than S. luetkemuellerii. Leakage of Pi from the cells caused C-shaped μ vs. Pi curves. Therefore, no unique Ks for growth could be estimated. The maximum growth rate (μm) (23° C) was 0.94 d?1for S. luetkemuellerii and 0.81 d?1for M. aeruginosa. The steady state concentration of Pi (P*) was lower in M. aeruginosa than in S. luetkemuellerii at medium growth rates. The concentration of Pi at which the uptake and release of Pi was equal (Pc was, however, lower in S. luetkemuellerii.  相似文献   

3.
This study assessed the implication of oxidative stress in the mortality of cells of Microcystis aeruginosa Kütz. Cultures grown at 25°C were exposed to 32°C, darkness, and hydrogen peroxide (0.5 mM) for 96 h. The cellular abundance, chl a concentration and content, maximum photochemical efficiency of PSII (Fv/Fm ratio), intracellular oxidative stress (determined with dihydrorhodamine 123 [DHR]), cell mortality (revealed by SYTOX‐labeling of DNA), and activation of caspase 3–like proteins were assessed every 24 h. The presence of DNA degradation in cells of M. aeruginosa was also assessed using a terminal deoxynucletidyl transferase‐mediated dUTP nick end labeling (TUNEL) assay at 96 h. Transferring cultures from 25°C to 32°C was generally beneficial to the cells. The cellular abundance and chl a concentration increased, and the mortality remained low (except for a transient burst at 72 h) as did the oxidative stress. In darkness, cells did not divide, and the Fv/Fm continuously decreased with time. The slow increase in intracellular oxidative stress coincided with the activation of caspase 3–like proteins and a 15% and 17% increase in mortality and TUNEL‐positive cells, respectively. Exposure to hydrogen peroxide had the most detrimental effect on cells as growth ceased and the Fv/Fm declined to near zero in less than 24 h. The 2‐fold increase in oxidative stress matched the activation of caspase 3–like proteins and a 40% and 37% increase in mortality and TUNEL‐positive cells, respectively. These results demonstrate the implication of oxidative stress in the stress response and mortality of M. aeruginosa.  相似文献   

4.
Growth and photosynthesis of an edible cyanobacterium, Ge‐Xian‐Mi (Nostoc), were investigated with differently sized colonies. Both photosynthesis and growth were dependent on the colony size. Compared with larger ones, smaller colonies grew faster regardless of the levels of light and temperature for culture and showed higher values of maximal net photosynthetic rate, apparent quantum yield, light‐saturating and compensating points, and dark respiration. The ratios of chl a content and mass to surface area of a colony increased and that of chl a to mass or mass to volume of a colony decreased with increased colonial sizes. A Ge‐Xian‐Mi colony appeared to increase its chl a content per surface area, enhancing the light‐shading effect; however, at the same time it decreased its mass density on a volume basis, minimizing the enhanced effects of shading and diffusion barrier caused by the thickening outer layer with increasing colony size during growth.  相似文献   

5.
Blooms of Microcystis aeruginosa (Kützing) Kützing occur frequently in many freshwater ecosystems around the world, but the role of environmental factors in promoting the growth and determining the proportion of toxic and non‐toxic strains still requires more investigation. In this study, four strains (toxic CPCC299 & FACHB905 and non‐toxic CPCC632 & FACHB315) were exposed to high light (HL) condition, similar to light intensity found at the surface of a bloom, to evaluate their sensitivity to photoinhibition. We also estimated their capacity to recover from this HL stress. For all strains, our results showed an increased inhibition of the photosynthetic activity with HL treatment time. When comparing the extent of photoinhibition between strains, both toxic strains were more resistant to the treatment and recovered completely their photosynthetic capacity after 3 h, while non‐toxic strains needed more time to recover. For toxic strains, the rETR under HL was higher compared to the rETR under low light (LL) control condition despite 50% photoinhibition. This suggests that the detrimental effect of high light (HL; up to 2 h) is outweighed by their higher photosynthetic potential. This conclusion did not stand for non‐toxic strains, and indicates their preference for LL environment. We also demonstrated that a LL/HL cycle induced a 259% increase in cell yield for a toxic strain and a decrease by 22% for a non‐toxic strain. This also indicates that toxic strains have higher tolerance to HL in a fluctuating light environment. Our data demonstrated that difference of sensitivity to HL between strains can modify the competitive outcome between toxic and non‐toxic strains and may affect bloom toxicity.  相似文献   

6.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. were grown in mixed cultures with various phosphate (Pi) additions. One pulse of Pi each day (semi-continuous cultures) favored M. aeruginosa whereas S. luetkemuellerii was favored when the same quantity of Pi was supplied continuously (chemostats). Both species coexisted under P limitation provided that the nutrient was supplied in an appropriate mode. The ability of each species to compete for P depended on their Pi uptake characteristics and their capability to retain the accumulated Pi. High affinity in uptake at low Pi concentrations contributed considerably to the growth eficiency of S. luetkemuellerii under continuous supply of PiM. aeruginosa was, however, consistently superior to S. luetkemuellerii in accuniulatiug the newly added P, but had a high rate of Pi release. In both -types of cultures, a net high of P went from M. aeruginosa to S. luetkemuellerii. The kinetic characteristics of the two species were used to simulate the outcome of competition experiments. Simulations agreed with the experimental data f both uptake and Pi release were considered in the model. The zlariable P*(the concentration of Pi at which the net uptake is equal to μ·QP is a function of uptake and release of Pi but could not explain the chemostat results. S. luetkemuellerii was the winner in many experiments even if its P*was higher thou that of M. aeruginosa. Thus, in the present case Pc (the concentration at which the net uptake is zero) was a better predictor of the ability to compete for Pi under steady state as well as transient conditions in the Pi supply.  相似文献   

7.
The green macroalga Ulva pertusa Kjellman produced UV‐B absorbing compounds with a prominent absorption maximum at 294 nm in response only to UV‐B, and the amounts induced were proportional to the UV‐B doses. Under a 12:12‐h light:dark regime, the production of UV‐absorbing compounds occurred only during the exposure periods with little turnover in the dark. There was significant reduction in growth in parallel with the production of UV‐B absorbing compounds. The polychromatic action spectrum for the induction of UV‐B absorbing compounds in U. pertusa exhibits a major peak at 292 nm with a smaller peak at 311.5 nm. No significant induction was detected above 354.5 nm, and radiation below 285 nm caused significant reduction in the levels of UV‐B absorbing compounds. After UV‐B irradiation at 1.0 W·m?2 for 9 h, the optimal photosynthetic quantum yield of the samples with UV‐B absorbing compounds slightly increased relative to the initial value, whereas that of thalli lacking the compounds declined to 30%–34% of the initial followed by subsequent recovery in dim light of up to 84%–85% of the initial value. There was a positive and significant relationship between the amount of UV‐B absorbing compounds with antioxidant activity as determined by the α,α‐diphenyl‐β‐picrylhydrazyl scavenging assay. In addition to mat‐forming characteristics and light‐driven photorepair, the existence and antioxidant capacity of UV‐B absorbing compounds may confer U. pertusa a greater selective advantage over other macroalgae, thereby enabling them to thrive in the presence of intense UV‐B radiation.  相似文献   

8.
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet‐B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron‐deficient cyanobacteria respond to UV‐B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV‐B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV‐B radiation under iron‐deficient conditions, but were less affected under iron‐replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV‐B radiation under iron‐deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV‐B radiation under iron‐replete conditions. These results indicate that iron‐deficient cyanobacteria are more susceptible to enhanced UV‐B radiation. Therefore, UV‐B radiation probably plays an important role in influencing primary productivity in iron‐deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron‐deficient regions around the world.  相似文献   

9.
Effects of potassium on the photosynthetic recovery of Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault were investigated to determine its exact role during rehydration. Potassium enhanced recovery of the ability to reduce the primary quinone‐type acceptor (QA) and plastoquinone (PQ) pool and the area over the fluorescence rise curve was increased by 127%. The proportions of closed PSII reaction centers at phases J and I and the net rate of closure of PSII reaction centers were decreased by, respectively, 19%, 8%, and 23% with the addition of potassium, due to changes in the ability of PSII for multiple turnovers needed to reduce the PQ pool. Potassium significantly enhanced the probability of electron transfer beyond QA and the recovery of electron transport flux per PSII reaction center. Electron transport from water to methyl viologen for samples rehydrated in K+‐free BG11 medium was 54% of those with the addition of potassium. However, electron flow from water to p‐benzoquinone and from reduced 2,6‐dichlorophenol‐indophenol to methyl viologen showed little change with the addition of potassium. The fast phase and slow phase of millisecond delayed light emission and the ATP content for samples rehydrated in K+‐free BG11 medium were, respectively, 71.6%, 50.7%, and 77.1% of those with the addition of potassium. These suggested that potassium affected electron transfer from PQ to plastocyanin through the cytochrome b6f complex and the proton motive force across the thylakoid membranes, probably reflecting its role in charge balance during H+ transport by the cytochrome b6f complex.  相似文献   

10.
The chlorophyte Ulva is perceived as a simple and uniform algal form, with little functional differentiation within a thallus. We compared morphology, pigmentation, photosynthesis, growth, reproduction, and UV‐B sensitivity between different thallus regions of Ulva pertusa Kjellman. Thallus thickness and cell size were significantly greater, whereas cell number was less in the basal region than in other regions. Photosynthetic pigment contents were lowest in the basal region and increased toward the marginal region. Photosynthetic capacity and photosynthetic efficiency normalized to fresh weight, area, volume, and cell number showed a progressive increase from the basal to marginal parts; however, on a chl basis those values were equal regardless of thallus part. Values of light saturation point were not statistically different between regions. Growth rates increased from marginal to basal and to middle parts of the thallus, whereas sporulation was highest in marginal (100%) followed by middle (30%) and basal parts (0%). Daily observation over 9 days showed that 56% of the basal cells divided once and did not produce spores, whereas every marginal cell went through its first division and 89% of the primary daughter cells also divided, resulting in 100% sporulation. A 7‐day treatment with PAR and PAR + UV‐A caused a significant decrease in the effective quantum yield of all thallus regions, followed by a recovery toward the initial values, whereas PAR + UV‐A + UV‐B irradiation led to greater photoinhibition and less recovery. Marked differences in the UV‐B sensitivity were observed, with marginal parts being more sensitive and basal parts most resistant.  相似文献   

11.
The effects of long term exposure to suboptimal growth temperature on the photosynthetic apparatus of Dunaliella tertiolecta Butcher were investigated using carbon fixation rate versus irradiance curves and the variable fluorescence induction method. Carbon fixation rates per unite chlorophyll a at saturating (pBm) and subsaturating (αB) irradiances were 55% and 39% lower, respectively, at 12° C than at 20° C. Chlorophyll a quotas and the spectrally averaged in vivo absorption cross section normalized to chlorophyll a (a*) were not significantly different at these two temperatures. Analysis of the fluorescence kinetics revealed 1) no significant variations of the amount of PSII photoactive reaction centers per unit chlorophyll a, 2) a 14% decrease of the PSII quantum yield(+) and 3) a 29% decrease of the energy transfer efficiency between the light harvesting chlorophyll a pigment bed and the PSII reaction centers. The decrease in energy transfer efficiency between the antennae and the PSII reaction centers at 12° C was interpreted as a mechanism to avoid photoinhibition.  相似文献   

12.
Stratospheric ozone depletion increases the amount of ultraviolet‐B radiation (UVBR) (280–320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)‐fixing filamentous bloom‐forming cyanobacterium in freshwater, was individually cultured in N‐deficient and N‐enriched media for long‐term acclimation before being subjected to ultraviolet‐B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m?2 treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv/Fm) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N‐deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m?2) exposure during the recovery period. Significantly increased (~830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.  相似文献   

13.
To better understand the interactions between PAR and UV‐B radiation in microalgae, the marine chlorophyte alga Dunaliella tertiolecta was subjected to a UV‐B flux of 4.1 W·m ? 2 (unweighted) with varying PAR fluxes. Rate constants for damage and repair processes during UV‐B exposure increased with PAR flux. However, recovery after UV‐B exposure increased with PAR up to 300 μmol quanta·m ? 2·s ? 1 1 Received 17 September 2002. Accepted 19 February 2003. , beyond which photoinhibition of PSII electron transport was found to decrease recovery rates. In the absence of PAR during the post UV‐B exposure period, no recovery was seen, indicating that perhaps the lack of light available for photosynthesis depresses repair either directly or indirectly by affecting ATP synthesis. Possible mechanisms for the observed interactions between PAR and UV‐B exposure are discussed.  相似文献   

14.
Recent reduction in the ozone shield due to manufactured chlorofluorocarbons raised considerable interest in the ecological and physiological consequences of UV‐B radiation (λ=280–315 nm) in macroalgae. However, early life stages of macroalgae have received little attention in regard to their UV‐B sensitivity and UV‐B defensive mechanisms. Germination of UV‐B irradiated spores of the intertidal green alga Ulva pertusa Kjellman was significantly lower than in unexposed controls, and the degree of reduction correlated with the UV doses. After exposure to moderate levels of UV‐B irradiation, subsequent exposure to visible light caused differential germination in an irradiance‐ and wavelength‐dependent manner. Significantly higher germination was found at higher photon irradiances and in blue light compared with white and red light. The action spectrum for photoreactivation of germination in UV‐B irradiated U. pertusa spores shows a major peak at 435 nm with a smaller but significant peak at 385 nm. When exposed to December sunlight, the germination percentage of U. pertusa spores exposed to 1 h of solar radiation reached 100% regardless of the irradiation treatment conditions. After a 2‐h exposure to sunlight, however, there was complete inhibition of germination in PAR+UV‐A+UV‐B in contrast to 100% germination in PAR or PAR+UV‐A. In addition to mat‐forming characteristics that would act as a selective UV‐B filter for settled spores under the parental canopy, light‐driven repair of germination after UV‐B exposure could explain successful continuation of U. pertusa spore germination in intertidal settings possibly affected by intense solar UV‐B radiation.  相似文献   

15.
The interactive effects of P starvation and exposure to UV radiation on growth rates, quantum efficiency of PSII electron transport, and P‐uptake capacity of the chlorophyte microalga Dunaliella tertiolecta Butcher are presented. Ultraviolet radiation did not in itself cause marked changes in growth rate, though it did induce changes in the effective quantum yield of PSII. Depriving cells of phosphate resulted in significant changes in all parameters examined. The decline of growth rate and fluorescence parameters after P starvation was significantly faster in the presence of UV radiation. Ultraviolet radiation also stimulated the magnitude of the transient changes in chl fluorescence (nutrient‐induced fluorescence transient) exhibited by P‐starved cells after resupply of that nutrient.  相似文献   

16.
Synechococcus species are important primary producers in coastal and open‐ocean ecosystems. When nitrate was provided as the sole nitrogen source, nickel starvation inhibited the growth of strains WH8102 and WH7803, while it had little effect on two euryhaline strains, WH5701 and PCC 7002. Nickel was required for the acclimation of Synechococcus WH7803 to low iron and high light. In WH8102 and WH7803, nickel starvation decreased the linear electron transport activity, slowed down QA reoxidation, but increased the connectivity factor between individual photosynthetic units. Under such conditions, the reduction of their intersystem electron transport chains was expected to increase, and their cyclic electron transport around PSI would be favored. Nickel starvation decreased the total superoxide dismutase (SOD) activity of WH8102 and WH7803 by 30% and 15% of the control, respectively. The protein‐bound 63Ni of the oceanic strain WH8102 comigrated with SOD activity on nondenaturing gels and thus provided additional evidence for the existence of active NiSOD in Synechococcus WH8102. In WH7803, it seems likely that nickel starvation affected other metabolic pathways and thus indirectly affected the total SOD activity.  相似文献   

17.
The interactive effects of P starvation and exposure to UV radiation (UVR) on rates of damage ( k ) and repair ( r ), modeled from exposure response curves (ERCs), in the chlorophyte microalga Dunaliella tertiolecta Butcher were investigated. When nutrient‐replete cells were exposed to the UVR during growth, k and r both increased by approximately 62% and 100%, respectively. However, when cells were starved of phosphorus, k increased by a similar amount as observed in replete cells, but r decreased by about 70%, explaining the increased susceptibility of cells to UVR‐induced inhibition of photosynthesis under P starvation. Although not specifically investigated in this study, it is argued that the decreased repair capacity under P starvation is due to a decline in nucleotides such as ATP and GTP, which are necessary for protein repair.  相似文献   

18.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

19.
We tested if different adaptation strategies were linked to a stress gradient in phytoplankton cells. For this purpose, we studied the adaptation and acclimation of Dictyosphaerium chlorelloides (Naumann) Komárek et Perman (Chlorophyta) and Microcystis aeruginosa (Kütz.) Kütz. (Cyanobacteria) to different water samples (from extremely acid, metal‐rich water to moderate stressful conditions) of the Agrio River–Caviahue Lake system (Neuquén, Argentina). Both experimental strains were isolated from pristine, slightly alkaline waters. To distinguish between physiological acclimation and genetic adaptation (an adaptive evolution event), a modified Luria‐Delbrück fluctuation analysis was carried out with both species by using as selective agent sample waters from different points along the stress gradient. M. aeruginosa did not acclimate to any of the waters tested from different points along the stress gradient nor did D. chlorelloides to the two most acidic and metal‐rich waters. However, D. chlorelloides proliferated by rapid genetic adaptation, as the consequence of a single mutation (5.4 × 10?7 resistant mutants per cell per division) at one locus, in less extreme water and also by acclimation in the least extreme water. It is hypothesized that the stress gradient resulted in different strategies of adaptation in phytoplankton cells from nonextreme waters. Thus, very extreme conditions were lethal for both organisms, but as stressful conditions decreased, adaptation of D. chlorelloides cells was possible by the selection of resistant mutants, and in less extreme conditions, by acclimation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号