首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of carbohydrate analysis and atomic force microscopy (AFM) was used to characterize the polysaccharides of the pennate diatom, Pinnularia viridis (Nitzsch) Ehrenberg. Polymeric substances were fractionated into those in the spent culture medium (SCM) and those sequentially extracted from the cells with water at 45° C (WW), NaHCO3 containing EDTA at 95° C (HB), and 1 M NaOH containing NaBH4 at 95° C. Carbohydrate, protein, and sulfate were detected in all the fractions, but their relative proportions differed significantly. Nineteen sugars were identified, including pentoses, hexoses, 6‐deoxyhexoses, O‐methylated sugars, aminohexoses, and traces of uronic acids. To some extent, the same constituent monosaccharides and a proportion of the linkage patterns occurred in all four fractions, indicating the fractions contained a spectrum of highly heterogeneous but structurally related polysaccharides. Several carbohydrates were enriched in specific fractions. A soluble, partially substituted, 3‐linked galactan was slightly enriched in the SCM. The WW fraction was highly enriched in 3‐linked glucan, presumably derived from chrysolaminaran. Chemical and AFM data for the WW and HB fractions indicated that compositional differences were associated with substantial changes in the morphology and properties of the cell surface mucilage. Soluble polymers relatively enriched in fucose conferred a degree of softness and compressibility to the mucilage, whereas most of the mucilage comprised firmer more gelatinous polymers comparatively enriched in rhamnose. The frustule residue dissolved during extraction with NaOH, and a partially substituted 3‐linked mannan, together with relatively large amounts of protein, was obtained.  相似文献   

2.
The effects of phosphate (P) limitation, varying salinity (5–65 psu), and solid media growth conditions on the polysaccharides produced by the model diatom, Phaeodactylum tricornutum Bohlin were determined. Sequential extraction was used to separate polymers into colloidal (CL), colloidal extracellular polymeric substances (cEPS), hot water soluble (HW), hot bicarbonate soluble (HB), and hot alkali (HA) soluble fractions. Media‐soluble polymers (CL and cEPS) were enriched in 4‐linked mannosyl, glucosyl, and galactosyl residues as well as terminal and 3‐linked xylosyl residues, whereas HW polymers consisted mainly of 3‐linked glucosyl as well as terminal and 2,4‐linked glucuronosyl residues. The HB fraction was enriched in terminal and 2‐linked rhamnosyl residues derived from the mucilage coating solubilized by this treatment. Hot alkali treatment resulted in the complete dissolution of the frustule releasing 2,3‐ and 3‐linked mannosyl residues. The fusiform morphotype predominated in standard and P‐limited cultures and cultures subjected to salinity variations, but growth on solid media resulted in an enrichment of the oval morphotype. The proportion and linkages of 15 residues, including neutral, uronic acid, and O‐methylated sugars, varied with environmental conditions. P limitation and salinity changes resulted in 1.5‐ to 2.5–fold increase in carbohydrate production, with enrichment of highly branched/substituted and terminal rhamnose, xylose, and fucose as well as O‐methylated sugars, uronic acids, and sulfate. The increased deoxy‐ and O‐methylated sugar content under unfavorable environments enhances the hydrophobicity of the polymers, whereas the anionic components may play important roles in ionic cross‐linking, suggesting that these changes could ameliorate the effects of salinity or P‐stress and that these altered polysaccharide characteristics may be useful as bioindicators for environmental stress.  相似文献   

3.
The gelatinous polysaccharides of a Batrachospermum species have been extracted from the alga. The major polysaccharide is acidic and has been separated from neutral polysaccharides by chromatography on DEAE-cellulose. The constituent sugars of the acidic polysaccharide include d- and l-galactose, d-mannose, d-xylose, l-rhamnose, d-glucuronic acid, and two O-methyl sugars, which have been characterized as 3-O-methyl-l-rhamnose (l-acofriose and 3-O-methyl-d-galactose. Partial acid hydrolysis of this polysaccharide has given a complex mixture of neutral and acidic oligosaccharides. The two preponderant acidic oligosaccharides contained galactose and glucuronic acid in 1:1 ratio, suggesting the presence of a repeating sequence of these two residues as a major structural feature of the polysaccharide.  相似文献   

4.
Bryopsis sp. from a restricted area of the rocky shore of Mar del Plata (Argentina) on the Atlantic coast was identified as Bryopsis plumosa (Hudson) C. Agardh (Bryopsidales, Chlorophyta) based on morphological characters and rbcL and tufA DNA barcodes. To analyze the cell wall polysaccharides of this seaweed, the major room temperature (B1) and 90°C (X1) water extracts were studied. By linkage analysis and NMR spectroscopy, the structure of a sulfated galactan was determined, and putative sulfated rhamnan structures and furanosidic nonsulfated arabinan structures were also found. By anion exchange chromatography of X1, a fraction (F4), comprising a sulfated galactan as major structure was isolated. Structural analysis showed a linear backbone constituted of 3‐linked β‐d ‐galactose units, partially sulfated on C‐6 and partially substituted with pyruvic acid forming an acetal linked to O‐4 and O‐6. This galactan has common structural features with those of green seaweeds of the genus Codium (Bryopsidales, Chlorophyta), but some important differences were also found. This is the first report about the structure of the water‐soluble polysaccharides biosynthesized by seaweeds of the genus Bryopsis. These sulfated galactans and rhamnans were in situ localized mostly in two layers, one close to the plasma membrane and the other close to the apoplast, leaving a middle amorphous, unstained cell wall zone. In addition, fibrillar polysaccharides, comprising (1→3)‐β‐d ‐xylans and cellulose, were obtained by treatment of the residue from the water extractions with an LiCl/DMSO solution at high temperature. These polymers were also localized in a bilayer arrangement.  相似文献   

5.
Arabinoxylans may account for up to 25% of the mass of grass cell walls. The interactions of these polysaccharides with themselves and with cellulose and lignin is believed to affect the walls physical properties and increase the walls resistance to biochemical conversion to fermentable sugars. Arabinoxylans have a backbone composed of 1,4-linked β-d-xylosyl residues, some of which are substituted at O-2 or O-3 with single arabinofuranosyl (Araf) residues. The Araf residues are likely transferred from UDP-Araf to the xylan backbone by arabinofuranosyltransferases. UDP-Araf is itself formed from UDP-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). In this study, RNA interference (RNAi) was used to suppress UAM expression in rice plants and thereby reduce the amounts of UDP-Araf available for cell wall synthesis. Several of the transgenic plants had reduced proportions of Araf in their walls together with a decrease in the extent of substitution of the xylan backbone, and a reduction of between 25% and 80% in ferulic acid and p-coumaric acid contents of the cell walls. Those transgenic plants with >25% reduction in the amounts of Araf were dwarfed and infertile.  相似文献   

6.
The macromolecular conformation of the constituent polysaccharides in lignocellulosic biomass influences their supramolecular interactions, and therefore their function in plants and their performance in technical products. The flexibility of glycosidic linkages from the backbone of hemicelluloses was studied by evaluating the conformational freedom of the φ and ψ dihedral angles using molecular dynamic simulations, additionally selected molecules were correlated with experimental data by nuclear magnetic resonance spectroscopy. Three types of β‐(1→4) glycosidic linkages involving the monosaccharides (Glcp, Xylp and Manp) present in the backbone of hemicelluloses were defined. Different di‐ and tetrasaccharides with combinations of such sugar monomers from hemicelluloses were simulated, and free energy maps of the φ – ψ space and hydrogen‐bonding patterns were obtained. The glycosidic linkage between Glc‐Glc or Glc‐Man (C‐type) was the stiffest with mainly one probable conformation; the linkage from Man‐Man or Man‐Glc (M‐type) was similar but with an increased probability for an alternative conformation making it more flexible, and the linkage between two Xyl‐units (X‐type) was the most flexible with two almost equally populated conformations. Glycosidic linkages of the same type showed essentially the same conformational space in both disaccharides and in the central region of tetrasaccharides. Different probabilities of glycosidic linkage conformations in the backbone of hemicelluloses can be directly estimated from the free energy maps, which to a large degree affect the overall macromolecular conformations of these polymers. The information gained contributes to an increased understanding of the function of hemicelluloses both in the cell wall and in technical products.  相似文献   

7.
Polysaccharide fractions SAcI and SAcII were isolated from callus tissues of rowan tree stems. The SAcI fraction was shown to contain compounds belonging to the arabinogalactan II group. The SAcII fraction, called sorban, comprised pectic polysaccharides composing the protopectin complex of the cell wall callus. The SAcII fraction was found to contain a large amount of galacturonic acid residues and a set of neutral sugars characteristic of rhamnogalacturonan I. The composition and properties allowed a suggestion that the sorban backbone is mainly formed by 1,4-α-D-galactopyranosyluronic acid residues, while the neutral sugars are represented by 1,4-linked glucopyranose and xylopyranose residues, 1,5-linked arabinofuranose, 1,6-linked galactopyranose and mannofuranose residues as well as terminal glucopyranose and xylopyranose residues. The callus growth was shown to be associated with nearly a constant content of galacturonic acid and neutral sugar residues in sorban (fraction SAcII).  相似文献   

8.
The lipopolysaccharides of Rhodobacter sulfidophilus and the two budding species Rhodopseudomonas acidophila and Rhodopseudomonas blastica were isolated and chemically analyzed. The all have a lipid A backbone structure with glucosamine as the only amino sugar. The lipid A's of Rb. sulfidophilus and Rps. blastica contain phosphate, their fatty acids are characterized by ester-linked, unsubstituted 3-OH-10:0 and amide-linked 3-OH-14:0 (Rb. sulfidophilus) or 3-oxo-14:0 (Rps. blastica). Lipid A of Rps. acidophila is free of phosphate and contains the rare 3-OH-16:0 fatty acid in amide linkage.The lipopolysaccharides of all three species contain 2-keto-3-deoxy-octonate (KDO) but are devoid of heptoses. Neutral sugars with the exception of glucose are lacking in the lipopolysaccharide of Rb. sulfidophilus. This shows a high galacturonic acid content. The lipopolysaccharides of Rps. acidophila and Rps. blastica have neutral sugar spectra indicative for typical O-chains (rhamnose, mannose, galactose, glucose in both species, and in Rps. blastica additionally 2-O-methyl-6-deoxy-hexose). The taxonomic value of the data is discussed.This paper is dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

9.
An enzymic-HPLC method was successfully applied to the simultaneous analysis of the galacturonate and neutral sugar contents of pectic substances. A mixture of seven neutral sugars that are present in oridnary pectins was eluted as one peak on a Shodex SUGAR SH1821 column, using 0.001 N sulfuric acid as the eluent; the peak was completely separated from that of galacturonate. No difference in the peak-area ratios of individual neutral sugars to glycerol (internal standard) was found among the seven; the relationship between the peak response and concentration was strictly linear throughout the entire concentration range studied. Seventeen pectic samples, including pectins, pectates, and rhamnogalacturonan fragments, were completely prehydrolyzed by Driselase, an industrial enzyme product from Irpex lacteus, and then analyzed for their constituent sugar contents. The enzymic-HPLC method was simple, accurate, and particularly useful for routine pectin analyses.  相似文献   

10.
The xylogalactan sulfate from Chondria macrocarpa (Ceramiales,Rhodophyta)   总被引:1,自引:1,他引:0  
A structure is proposed for the complex xylogalactan sulfate from Chondria macrocarpa. The hot-water extract of C. macrocarpa was desulfated or alkali-treated and Smith degraded. Constituent sugars and their substitution patterns were identified using a modified Hakamori methylation procedure suited to sulfated polysaccharides and a double hydrolysis-reduction protocol that yielded derivatives from all of the sugar residues, including the labile 3,6-anhydrogalactosyl residues. The polymer has an agar-type backbone of alternating 3-linked \-d- and 4-linked -L-galactopyranosyl units. The d-residues are partially sulfated on O-2 (50%) and O-6 (20–30%). About 40% of the l-residues are present as the 3,6-anhydride and 25% as its precursor l-galactose 6-sulfate. A significant proportion of the remaining l-galactosyl residues have both a d-xylopyranosyl substituent on O-3 and a sulfate ester on O-6 and are stable to alkali.  相似文献   

11.
Introduction – Ephedrine alkaloids cannot account for all the effects of Ephedra sinica and the polysaccharides are also demonstrated to be one of the main bioactive constituents of E. sinica. However, no work has been reported on the analysis of monosaccharide composition of purified polysaccharides isolated from the stem of E. sinica. Objective – To develop a rapid and efficient capillary zone electrophoresis (CZE) method based on pre‐column derivatisation with 1‐phenyl‐3‐methyl‐5‐pyrazolone for the simultaneous determination of neutral and acidic sugars of purified polysaccharides from E. sinica. Methodology – Three polysaccharides (ESP‐A3, ESP‐A4 and ESP‐B4) were isolated and purified by ion exchange and gel‐filtration chromatography from the stem of E. sinica. The effects of background electrolyte pH and concentration, applied voltage and temperature on the separation were investigated. Meanwhile, factors affecting the hydrolysis of ESP‐B4 with sulphuric acid were investigated by changing the hydrolysis time, acid concentration and hydrolytic temperature to achieve complete hydrolysis. The standard curves coupled with correction factors were used to calculate molar ratios. Results – The optimal CZE method coupled with correction factors was successfully applied to the determination of molar ratios of three purified polysaccharides and their corresponding partial acid hydrolysis products. ESP‐A3, ESP‐A4 and ESP‐B4 were all typical acidic hetero‐polysaccharides and consisted of xylose, arabinose, glucose, rhamnose, mannose, galactose, glucuronic acid and galacturonic acid, and their corresponding molar ratios were 6.8:7.5:1.0:14.0:13.7:22.3:10.2:3.8 for ESP‐A3, 1.2:4.1:1.0:5.1:1.6:17.3:3.1:2.2 for ESP‐A4, and 1.0:4.5:1.0:2.0:1.0:5.5:1.5:50.0 for ESP‐B4. Conclusion – The results provided scientific evidence for the further study of the structure and bioactivity of complex acidic E. sinica polysaccharides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The gum polysaccharides from Terminalia sericea and T. superba have been analysed. They have a complex sugar composition, containing galacturonic, glucuronic, and 4-O-methylglucuronic acids as well as galactose, arabinose, rhamnose, mannose and xylose. The exudates from T. sericea and T. superba are remarkably similar in composition, particularly with respect to their proportions of neutral sugars and total uronic acid content, although T. sericea gum contains considerably more 4-O-methylglucuronic acid than T. superba. Both gums are very viscous and dissolve readily to give solutions of good colour.!!  相似文献   

13.
Lignin-carbohydrate complexes containing phenolic acids (LCC-W) were isolated from Moso-bamboo (Phyllostachys pubescens Mazel) and characterized. LCC-W was separated into three fractions (W-l, 2, and 3) by gel filtration on Sepharose 4B. Of these three LCCs W-2 and W-3 were included in the gel matrices. W-2 consists of 34.7% neutral sugar, 1.6% uronic acid, 52.1% lignin, and 6.1% phenolic acid, and W-3, 67.9%, 3.6%, 22.3%, and 1.1%, respectively. Neutral sugar residues of W-2 and W-3 were mainly l-arabinose and d-xylose in the ratios of 5.5:94.3 in W-2, and 4.5:95.0 in W-3, respectively. Methylation, periodate degradation, and NMR analyses indicated that the carbohydrate moiety of LCC-W is composed of a linear backbone of β-(l→4)-linked d-xylopyranose residues with approximately every thirty residues carrying one 4-O-methyl-d-glucuronic acid and one or two arabinofuranose residues. Saponified phenolic acids were composed of trans-p-coumaric and trans-ferulic acids, which seems to be esterified to carbohydrate and lignin, respectively. Alkaline treatment, periodate degradation, and hydrophobic interaction chromatography suggested the presence of alkali labile and stable lignin–carbohydrate linkages.  相似文献   

14.
Peng L  Hocart CH  Redmond JW  Williamson RE 《Planta》2000,211(3):406-414
 Three non-allelic radial swelling mutants (rsw1, rsw2 and rsw3) of Arabidopsisthaliana L. Heynh. were shown to be specifically impaired in cellulose production. Fractionation methods that identify, characterise and quantify some of the major cell wall polysaccharides in small quantities of seedlings demonstrated that changes in the production of cellulose are much more pronounced than changes in the production of non-cellulosic polysaccharides. A crude cell wall pellet was sequentially extracted with chloroform methanol (to recover lipids), dimethyl sulphoxide (starch), ammonium oxalate (pectins) and alkali (hemicelluloses). Crystalline cellulose remained insoluble through subsequent treatments with an acetic/nitric acid mixture and with trifluoroacetic acid. Cetyltrimethylammonium bromide precipitation resolved neutral and acidic polymers in the fractions, and precipitation behaviour, monosaccharide composition and glycosidic linkage patterns identified the major polysaccharides. The deduced composition of the walls of wild-type seedlings and the structure and solubility properties of the major polymers were broadly typical of other dicots. The three temperature-sensitive, radial swelling mutants produced less cellulose in their roots than the wild type when grown at their restrictive temperature (31 °C). There were no significant differences at 21 °C where no radial swelling occurs. The limited changes seen in the monosaccharide compositions, glycosidic linkage patterns and quantities of non-cellulosic polysaccharides support the view that the RSW1, RSW2 and RSW3 genes are specifically involved in cellulose synthesis. Reduced deposition of cellulose was accompanied by increased accumulation of starch. Received: 15 December 1999 / Accepted: 18 January 2000  相似文献   

15.
Paper chromatography of neutral sugars and gas chromatography of their aldononitrile acetates indicated the presence of fucose, arabinose and a small amount of glucose in purified human umbilical cord hyaluronate. The molar ratios of serine, threonine and aspartic acid to neutral sugars were not unity, suggesting the non-involvement of the neutral sugars and the amino acids in a carbohydrate-protein linkage. The same was indicated by an increase in the percentage of the aforementioned amino acids and by the absence of sugar alditols in umbilical cord hyaluronate reduced eith NaBH4 -PdCl2, after alkali treatment. This reduction caused a decrease in the intrinsic viscosity and molecular wieght to about one-half and an appreciable decrease in the specific rota tion of hyaluronate, suggesting a separation of the two antiparallel chains o the double helical hyaluronate. The umbilical cord hyluronate containe contained bound silicon and it is possible that this bound silicon may cross-link the two chains at interspersed intervals through the uronic acid moiety and/or through neutral sugars.  相似文献   

16.
The effect of hydrofluoric acid (aqueous 48% HF) upon different lipopolysaccharides (LPS) was studied, employing conditions (48 h at + 4°C) that are commonly used to dephosphorylate LPS. From the LPS of Salmonella typhimurium having the O antigen 4,5,12 almost all of the O-antigenic sugars (Abe, Gal, Glc, Man, Rha) were liberated in dialysable form, whereas the saccharide chains of Salmonella LPS with O antigen 6,7 (Man, Glc, GlcNAc) were resistant to HF. The lability towards HF was shown to be due to the presence of the deoxysugar L-rhamnose in the saccharide backbone of the O antigen 4,5,12, since only Rha was found as the terminal sugar in the corresponding dialysable material. Hydrofluoric acid can thus be used to specifically cleave Rha-containing polysaccharides.  相似文献   

17.
姚绍嫦  黄鼎  谭勇  顾晋源  李良波  黄荣韶 《广西植物》2021,41(11):1939-1948
为提高牛大力块根的产量与品质,该研究以不同发育时期(移栽6、12、18、24、30、36个月)的牛大力块根为材料,采用紫外分光光度法对糖类含量及其相关酶活性进行测定,研究它们在牛大力块根发育过程中的动态变化规律。结果表明:(1)牛大力块根的生长发育进程可初步划分为形成期(移栽6~12个月)、迅速膨大期(移栽12~24个月)与稳定膨大期(移栽24~36个月)三个阶段。淀粉与蔗糖分别是牛大力块根中主要的多糖与可溶性糖。在牛大力块根发育过程中,多糖类物质的含量逐渐增加,而可溶性糖含量逐渐减少,两者之间呈显著负相关,推测可溶性糖的分解代谢有利于促进多糖类物质的积累。(2)蔗糖的分解代谢是蔗糖合酶(SUS)、蔗糖磷酸合酶(SPS)、酸性转化酶(AI)与中性转化酶(NI)等多种相关酶协同作用的结果。SUS在牛大力块根发育过程中发挥着既催化蔗糖合成,又催化蔗糖分解的双重调节作用,SUS(合成)的活性不断上升,至移栽36个月达到峰值,极显著高于其他时期; SUS(分解)的活性从移栽6个月至24个月逐渐上升,但在块根稳定膨大期稍有下降; 其净活性为催化蔗糖分解,在移栽12个月达到最高。转化酶AI和NI的活性均在块根发育过程中逐渐上升,且AI活性高于NI活性,提示AI可能在蔗糖代谢分解过程中发挥更重要的作用。该研究结果可为今后深入研究牛大力多糖类成分积累和调控机制提供理论依据,并为提高牛大力药材的产量与品质提供技术指导。  相似文献   

18.
Primary cell walls of grasses and cereals contain arabinoxylans with esterified ferulate side chains, which are proposed to cross‐link the polysaccharides during maturation by undergoing oxidative coupling. However, the mechanisms and control of arabinoxylan cross‐linking in vivo are unclear. Non‐lignifying maize (Zea mays L.) cell cultures were incubated with l‐ [1‐3H]arabinose or (E)‐[U‐14C]cinnamate (radiolabelling the pentosyl and feruloyl groups of endogenous arabinoxylans, respectively), or with exogenous feruloyl‐[3H]arabinoxylans. The cross‐linking rate of soluble extracellular arabinoxylans, monitored on Sepharose CL‐2B, peaked suddenly and transiently, typically at ~9 days after subculture. This peak was not associated with appreciable changes in peroxidase activity, and was probably governed by fluctuations in H2O2 and/or inhibitors. De‐esterified arabinoxylans failed to cross‐link, supporting a role for the feruloyl ester groups. The cross‐links were stable in vivo. Some of them also withstood mild alkaline conditions, indicating that they were not (only) based on ester bonds; however, most were cleaved by 6 m NaOH, which is a property of p‐hydroxybenzyl–sugar ether bonds. Cross‐linking of [14C]feruloyl‐arabinoxylans also occurred in vitro, in the presence of endogenous peroxidases plus exogenous H2O2. During cross‐linking, the feruloyl groups were oxidized, as shown by ultraviolet spectra and thin‐layer chromatography. Esterified diferulates were minor oxidation products; major products were: (i) esterified oligoferulates, released by treatment with mild alkali; and (ii) phenolic components attached to polysaccharides via relatively alkali‐stable (ether‐like) bonds. Thus, feruloyl esters participate in polysaccharide cross‐linking, but mainly by oligomerization rather than by dimerization. We propose that, after the oxidative coupling, strong p‐hydroxybenzyl–polysaccharide ether bonds are formed via quinone‐methide intermediates.  相似文献   

19.
The neutral constituent sugars of antibiotic K-52B and their glycosidic linkages were examined by methylation analysis and Smith degradation. After partial acid hydrolysis of K-52B, neutral oligosaccharides I, II and III were isolated, and the constituent sugars of each oligosaccharide and their glycosidic linkages were similarly examined. K-52B was found to contain α-d-glcp-(l → 4)-d-galp-(l → 4)-l-fuc and l-araf-(1 → 4)-d-gal-(l → as neutral sugar fragments.  相似文献   

20.
The terrestrial cyanobacterium Nostoc sp. HK-01 was more tolerant to NaCl stress than the aquatic cyanobacterium Anabaena sp. PCC 7120 (also called Nostoc sp. PCC 7120) which is similar to Nostoc sp. HK-01 in phylogeny. We determined the amount of extracellular polysaccharides (capsular and released polysaccharides) from the cells of both strains cultured with or without 200 mM NaCl. The amount of capsular polysaccharides from Nostoc HK-01 reached approximately 65% of the dry weight whereas that from Anabaena PCC 7120 only occupied approximately 18% of the dry weight under NaCl stress. Anabaena PCC 7120 grew well under NaCl stress when both polysaccharides from Nostoc HK-01 were added to the culture. However, Anabaena PCC 7120 barely grew under NaCl stress when both of its polysaccharides were added. Extracellular polysaccharides from Nostoc HK-01 contained abundant fucose and glucuronic acid in comparison with those from Anabaena PCC 7120. Under NaCl stress, the composition ratios of sugars in the extracellular polysaccharides from Anabaena PCC 7120 hardly changed in comparison with those in ordinary culture conditions. By contrast, the composition ratios of sugars in the extracellular polysaccharides from Nostoc HK-01 changed under NaCl stress. These results suggest that the effect of extracellular polysaccharides from Nostoc HK-01 on NaCl tolerance comes from the increased amount of capsular polysaccharides, the sugar composition, and the change of the sugar composition ratio under NaCl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号