共查询到20条相似文献,搜索用时 15 毫秒
1.
Prochilodus magdalenae is an endemic freshwater fish that occurs in the Magdalena, Sinú and Atrato hydrographic basins. It has an important economic role and is a food resource for the artisanal fishing communities. Its socioeconomic importance contrasts with the current status of its fisheries, where stocks are being depleted. Considering its importance and lack of information on its genetic structure, we used seven microsatellite markers to assess the genetic structure of wild populations of P. magdalenae. The genetic diversity was assessed and the population genetic structure was estimated through Fst, analysis of molecular variance and Bayesian analysis. A total of 290 alleles were found in all loci throughout all population. The high polymorphism contrasts with the levels of observed heterozygosity (Ho = 0.276), which are the lowest values recorded for the family. We found three populations of bocachico coexisting throughout the studied system, contradicting the hypothesis that freshwater migratory fish form panmictic populations. These results on the genetic structure of P. magdalenae constitute tools for a better understanding of the behavior and biology of this species, contributing to fish management and conservation programs. 相似文献
2.
The construction of hydroelectric dams, pollution of rivers and other environmental changes are responsible for the disappearance of many natural fish stocks. The purpose of this work was to analyze the fish Prochilodus argenteus inhabiting the region of the Três Marias dam in the São Francisco River (Brazil) collected in two sites having distinct environmental characteristics. Three novel homologous and one known cross-specific microsatellites were used to assess genetic variation within and between the two collection sites (namely A and B) in order to confirm the occurrence of population substructuring previously suggested using RAPD markers. A higher number of exclusive alleles and a greater genetic variability in region B strongly reinforce the co-existence of different reproductive units in this area. F ST estimates showed a significant population differentiation between the two sites, indicating the possible existence of distinct gene pools. Considering the economic importance of this fishery resource in the São Francisco River, these findings could provide very important information for fisheries management, aquaculture and conservation of the stocks of this species. 相似文献
3.
The southern brown bandicoot (Isoodon obesulus) was once widely distributed throughout coastal regions of Australia, however, populations have now become fragmented and the number of individuals are declining rapidly. As a result, this species is now classified as endangered in New South Wales and requires management. We have developed eight microsatellite markers to investigate levels of genetic variation and subdivision among these isolated populations. These microsatellite markers show levels of variability ranging from four to eight alleles and observed heterozygosities of 0.353–0.938. These microsatellite markers are also suitable for similar population studies on other related marsupials. 相似文献
4.
Gao LZ 《Molecular ecology》2005,14(14):4287-4297
Oryza officinalis Wall. ex Watt. is an agriculturally important but seriously endangered species of wild rice. To obtain more accurate estimates of population structure for improved conservation planning of the species, genetic variability at 14 microsatellite DNA loci was examined in population samples covering most of the species' range in China. Considerable genetic variability (overall Na = 1.886, P = 62%, HO = 0.056, HE = 0.216, and HS = 0.277) was detected at the 14 loci in 442 individuals of the 18 natural populations. The evaluation of partitioning of genetic variability (FST = 0.442) suggested high genetic differentiation among the Chinese O. officinalis populations. An overall value of Nm = 0.316 suggested limited gene flow occurred among the sampled populations. Most of the populations showed heterozygote deficits in tests of Hardy-Weinberg equilibrium and significantly positive FIS values. This could be due to some inbreeding occurring in this predominantly outcrossing species. For effective in situ conservation and restoration genetics, maintenance of significant historical processes is particularly important, including high outbreeding, considerable gene flow, and large population effective sizes. The high FST values detected among populations in this study are instructive for adopting a conservation plan that includes representative populations with the greatest genetic variation for either in situ conservation management or germplasm collection expeditions. 相似文献
5.
Landscape genetics is being increasingly applied to elucidate the role of environmental features on the population structure of terrestrial organisms. However, the potential of this framework has been little explored in aquatic ecosystems such as large rivers. Here, we used a landscape genetics approach in order to (i) document the population structure of the yellow perch ( Perca flavescens ) by means of genetic variation at microsatellite markers, (ii) assess to what extent the structure was explained by landscape heterogeneity, and (iii) interpret the relevance of interactions between genetics and landscape for management and conservation. Analysis of the genetic variation among 1715 individuals from 16 localities and distributed over 310 km in the freshwater section of the Saint Lawrence River (Québec, Canada) revealed a relatively modest level of genetic structuring ( F ST = 0.039). Application of the Monmonier's algorithm combining geographical and genetic information identified three zones of restricted gene flow defining four distinct populations. Physical barriers played a more important role on gene flow and genetic structure than waterway geographical distance. We found correlations between genetic differentiation and presence of distinct water masses in the sector of Lake Saint-Louis ( r = 0.7177, P = 0.0340) and with fragmentation of spawning habitats in the sector of Lake Saint-Pierre ( r = 0.8578, P = 0.0095). Our results support the treatment of four distinct biological units, which is in contrast with the current basis for yellow perch management. Finally, this study showed that landscape genetics is a powerful means to identify environmental barriers to gene flow causing genetic discontinuities in apparently highly connected aquatic landscapes. 相似文献
6.
Advancing technologies have facilitated the ever‐widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (FST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity‐based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration‐specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context‐dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non‐human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high‐throughput technologies in population genetics. 相似文献
7.
Lichens are widespread symbioses and play important roles in many terrestrial ecosystems. The genetic structure of lichens is the result of the association between fungal and algal populations constituting the lichen thallus. Using eight fungus- and seven alga-specific highly variable microsatellite markers on within-population spatial genetic data from 62 replicate populations across Europe, North America, Asia and Africa, we investigated the contributions of vertical and horizontal transmission of the photobiont to the genetic structure of the epiphytic lichen Lobaria pulmonaria. Based on pairwise comparisons of multilocus genotypes defined separately for the mycobiont and for the photobiont, we inferred the transmission mode of the photobiont and the relative contribution of somatic mutation and recombination. After constraining the analysis of one symbiont to pairs of individuals with genetically identical symbiotic partners, we found that 77% of fungal and 70% of algal pairs were represented by clones. Thus, the predominant dispersal mode was by means of symbiotic vegetative propagules (vertical transmission), which dispersed fungal and algal clones co-dependently over a short distance, thus shaping the spatial genetic structure up to distances of 20m. Evidence for somatic mutation generating genetic diversity was found in both symbionts, accounting for 30% of pairwise comparisons in the alga and 15% in the fungus. While the alga did not show statistically significant evidence of recombination, recombination accounted for 7.7% of fungal pairs with identical algae. This implies that, even in a mostly vegetatively reproducing species, horizontal transmission plays a role in shaping the symbiotic association, as shown in many coral and other symbioses in nature. 相似文献
8.
DANIEL J. ADAMSKI NICKLOS S. DUDLEY CLIFFORD W. MORDEN DULAL BORTHAKUR 《Plant Species Biology》2012,27(3):181-190
Acacia koa A. Gray (koa) is a leguminous tree endemic to the Hawaiian Islands and can be divided into morphologically distinguishable groups of A. koaia Hillebrand, A. koa and populations that are intermediate between these extremes. The objectives of this investigation were to distinguish among divergent groups of koa at molecular levels, and to determine genetic diversity within and among the groups. Phylogenetic analyses using the ITS/5.8S rDNA and trnK intron sequences did not separate the representative koa types into distinct clusters. An unweighted pair group method with arithmetic mean cluster analysis and principal coordinate analysis, based on allele profiles of 12 microsatellite loci for 215 individual koa samples, separated the population into three distinct clusters consistent with their morphology, A. koaia, A. koa and intermediate forms. There was an average of 8.8 alleles per polymorphic locus (AP) among all koa and koaia individuals. The intermediate populations had the highest genetic diversity (H′ = 1.599), AP (7.9) and total number of unique alleles (21), whereas A. koaia and A. koa showed similar levels of genetic diversity (H′ = 0.965 and 0.943, respectively). No correlation was observed between geographic distance and genetic distance as determined by a Mantel test (r = 0.027, P = 0.91). The data presented here support previous recommendations that morphological variation within koa should be recognized at the subspecific level rather than as distinct species. 相似文献
9.
JAMES P. SAINSBURY ELIZABETH S. MACAVOY GEOFFREY K. CHAMBERS 《Molecular ecology resources》2004,4(4):623-625
Eight microsatellite loci were characterized from the Kaka (Nestor meridionalis), a New Zealand parrot, using a polymerase chain reaction‐based isolation technique. Locus‐specific primers were used to genotype nine Kaka populations and tested on 25 other species of parrot. The number of alleles observed within Kaka ranged from one to 16 in the 12–126 individuals screened and two loci exhibited greater than 60% heterozygosity. Furthermore, these primers are likely to be useful in population‐level studies of two other New Zealand parrots. 相似文献
10.
Ten microsatellite loci were developed for the black‐lipped pearl oyster Pinctada margaritifera with a magnetic bead enrichment protocol. These tetra‐ and dinucleotide markers were polymorphic, with 10 to 43 alleles observed in 97 individuals from two Tuamotu atoll populations. Most loci revealed significant genic differentiation between the two populations and also exhibited some degree of heterozygote deficiencies, probably due to the presence of null alleles. These loci should be very useful to describe genetic structure, genetic variability and reproductive success in the various aquaculture and wild populations of pearl oyster in French Polynesia. 相似文献
11.
de Abreu MM Pereira LH Vila VB Foresti F Oliveira C 《Genetics and molecular biology》2009,32(4):868-873
Catfishes of the genus Pseudoplatystoma are very important species due to both their high commercial value and their ecological role as voracious predators. They undertake lengthy migratory movements during their life-cycle, this including reproductive migration which occurs from October to December in the rainy season. In the present study, seven microsatellite loci were analyzed to access genetic variability in two samples of P. reticulatum from the Upper Paraguay Basin. The loci were highly polymorphic (mean = 7.28). According to all analysis, the two samples of P. reticulatum revealed pronounced genetic differentiation. F(st) value was 0.2290, R(st) value 0.1067 and AMOVA 22.90% (F(st) ) and 10.67% (R(st) ), all being highly significant (p < 0.001). The division of the fishes into two groups was confirmed by microsatellite multi-locus Bayesian assignment testing. The results obtained present evidence of genetic structuring in a P. reticulatum population. 相似文献
12.
Data are presented on temperature responses, based onin vitro growth performance, of eight species of colloid-producing red algae; these include the five most important commercial species of agarophytes in South America. The temperature optima do not conform strictly to geographic distribution, and intolerance to high temperature is not the factor that controls the spreading of temperate species ofGracilaria to warmer areas. WithinPterocladia capillacea (Gmelin) Bornet et Thuret, populations from two distinct localities had different responses to temperature optima. Data suggest that the disjunct distribution of this species in the American Atlantic is due to its poor performance at temperatures above 26 °C. The fastest maximum growth rate was observed inHypnea cornuta (Lamouroux) J. Agardh (doubling time 2.8 d), and the slowest inP. capillacea from Cabo Frio (doubling time 50.0 d). All the species studied, including the valuable Chilean and Argentinean species ofGracilaria, could tolerate the temperature regimes of the Brazilian waters. 相似文献
13.
14.
Phaedranassa tunguraguae is an endangered species endemic to Ecuador. Eight highly polymorphic microsatellite loci were isolated from an enriched genomic library for this species. Levels of polymorphism were evaluated using a total of 31 individuals from a single natural population. An average of 14.1 alleles per locus was detected, and observed heterozygosity ranged from 0.387 to 0.903. All but one locus depart significantly from Hardy–Weinberg equilibrium. These loci are the first microsatellite primers isolated for Amaryllidaceae and will be utilized to investigate patterns of genetic variation of P. tunguraguae, which will contribute data relevant to the conservation of the species. 相似文献
15.
The natural distribution of honeybee subspecies in Europe has been significantly affected by human activities during the last century. Non-native subspecies of honeybees have been introduced and propagated, so that native black honeybee (Apis mellifera mellifera) populations lost their identity by gene-flow or went extinct. After previous studies investigated the remaining gene-pools of native honeybees in France and Spain, we here assess the genetic composition of eight northwest European populations of the black honeybee, using both mitochondrial (restriction fragment length polymorphisms of the intergenic transfer RNAleu-COII region) and nuclear (11 microsatellite loci) markers. Both data sets show that A. m. mellifera populations still exist in Norway, Sweden, Denmark, England, Scotland and Ireland, but that they are threatened by gene flow from commercial honeybees. Both Bayesian admixture analysis of the microsatellite data and DraI-RFLP (restriction fragment length polymorphism) analysis of the intergenic region indicated that gene-flow had hardly occurred in some populations, whereas almost 10% introgression was observed in other populations. The most introgressed population was found on the Danish Island of Laeso, which is the last remaining native Danish population of A. m. mellifera and the only one of the eight investigated populations that is protected by law. We discuss how individual admixture analysis can be used to monitor the restoration of honeybee populations that suffer from unwanted hybridization with non-native subspecies. 相似文献
16.
Dominique P. Sigg 《Conservation Genetics》2006,7(4):577-589
Loss of genetic diversity and increased population differentiation from source populations are common problems associated with translocation programmes established from captive-bred stock or a small number of founders. The bridled nailtail wallaby is one of the most endangered macropods in Australia, having been reduced to a single remnant population in the last 100 years. A translocated population of bridled nailtail wallabies was established using animals sourced directly from the remnant population (wild-released) as well as the progeny of animals collected for a captive breeding programme (captive-bred). The aims of this study were to compare genetic diversity among released animals and their wild-born progeny to genetic diversity observed in the remnant population, and to monitor changes in genetic diversity over time as more animals were released into the population. Heterozygosity did not differ between the translocated and remnant population; however, allelic diversity was significantly reduced across all released animals and their wild-born progeny. Animals bred in captivity and their wild-born progeny were also significantly differentiated from the source population after just four generations. Wild-released animals, however, were representative of the source population and several alleles were unique to this group. Both heterozygosity and allelic diversity among translocated animals decreased over time with the additional release of captive-bred animals, as no new genetic stock was added to the population. Captive breeding programmes can provide large numbers of animals for release, but this study highlights the importance of sourcing animals directly from remnant populations in order to maintain genetic diversity and minimise genetic drift. 相似文献
17.
Echinotriton chinhaiensis is a critically endangered salamander and its distribution is restricted to Ningbo, Zhejiang Province of China. In this study, we developed and characterized fifteen polymorphic microsatellite loci for E. ehinhaiensis from dinucleotide- and tetranucleotide- enriched library. The number of alleles ranges from 4 to 12 with an average of 7.27 alleles per locus. The observed and expected heterozygosities values were from 0.250 to 0.844 and 0.511 to 0.872 with an average value of 0.596 and 0.722; respectively. The polymorphic microsatellite loci described in this paper are useful in the further study on genetic diversity and gene flow, which would be helpful to formulate effective conservation strategies for the E. chinhaiensis. 相似文献
18.
Recently developed methods of individual-based analysis of genetic data allow an unprecedented opportunity to understand the relationships among fragmented populations. By defining population structure and identifying migrant individuals, such analyses can provide a framework to aid in evaluating the threats posed by inbreeding and reduced genetic variability as a consequence of limited gene flow among fragments. Here we investigate population structure in the critically endangered Cross River gorilla (Gorilla gorilla diehli) by applying a suite of individual-based analyses to data obtained from between one-quarter and one-third of the estimated total population through the use of noninvasively collected DNA samples. The population structure inferred using data from 11 autosomal microsatellite loci was broadly consistent with geography and habitat fragmentation, but showed no simple isolation-by-distance effects. In contrast to previous field surveys, which suggested that all gorilla localities were isolated from one another, we infer low levels of gene flow and identify migrants between habitat fragments as well as individuals of admixed ancestry, suggesting persistent recent reproductive contact between many of the localities. These results are encouraging for the conservation of the Cross River gorilla population. Conservation efforts should strive to maintain connectivity between subpopulations that are still in migratory contact and attempt to restore connectivity where it has been lost. 相似文献
19.
Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci 总被引:3,自引:0,他引:3
T. Lehmann N. J. Besansky W. A. Hawley T. G. Fahey L. Kamau & F. H. Collins 《Molecular ecology》1997,6(3):243-253
The population genetic structure of the Anopheles gambiae in western Kenya was studied using length variation at five microsatellite loci and sequence variation in a 648-nt mtDNA fragment. Mosquitoes were collected from houses in villages spanning up to 50 km distance, The following questions were answered, (i) Are mosquitoes in a house more related genetically to each other than mosquitoes between houses? (ii) What degree of genetic differentiation occurs on these geographical scales? (iii) How consistent are the results obtained with both types of genetic markers? At the house level, no differentiation was detected by FST and RST, and the band sharing index test revealed no significant associations of alleles across loci. Likewise, indices of kinship based on mtDNA haplotypes in houses were even lower than in the pooled sample. Therefore, the hypothesis that mosquitoes in a house are more related genetically was rejected. At increasing geographical scales, microsatellite allele distributions were similar among all population samples and no subdivision of the gene pool was detected by FST or RST. Likewise, estimates of haplotype divergence of mtDNA between populations were not higher than the within population estimates, and mtDNA-based FST values were not significantly different from zero. That sequence variation in mtDNA provided matching results with microsatellite loci (while high genetic variation was observed in all loci), suggested that this pattern represents the whole genome. The minimum area associated with a deme of A. gambiae in western Kenya is therefore larger than 50 km in diameter. 相似文献
20.
The two species of Galápagos land iguanas (Conolophus subcristatus and C. pallidus) are listed as 'vulnerable' species by the International Union for the Conservation of Nature (IUCN Red List; http://www.iucnredlist.org). Here, we report on the isolation and characterization of 10 microsatellite markers using 562 individuals sampled on all Galápagos islands where Conolophus species occur today. We show that these 10 loci are highly polymorphic and display diagnostic alleles for five out of the six island populations. These markers will be useful for Conolophus population genetic analyses as well as for guiding ongoing captive breeding programmes. 相似文献