首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fritz, U., Alcalde, L., Vargas‐Ramírez, M., Goode, E.V., Fabius‐Turoblin, D.U. & Praschag, P. (2012). Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. —Zoologica Scripta, 41, 220–232. The Chelonoidis chilensis complex, the sister group of the famous Galápagos tortoises, is a widely distributed group of South American land tortoises, ranging from the dry Chaco of Bolivia, Paraguay and northern Argentina to northern Patagonia. Within this complex, up to three distinct species have been recognized. Using sequence data of the mitochondrial cytochrome b gene and length polymorphisms of 10 microsatellite loci, we investigate genetic differentiation among all three nominal species. We find only negligible differentiation, with decreasing genetic diversity from north to south. We conclude that only one species, Chelonoidis chilensis (Gray, 1870), is valid, with C. donosobarrosi ( Freiberg, 1973 ) and C. petersi ( Freiberg, 1973 ) as its junior synonyms. Morphological variation within C. chilensis sensu lato is in accord with the observation that size variation in chelonians follows Bergmann’s rule, with body size increasing with latitude. The observed phylogeographic differentiation inverses the well‐known pattern of southern genetic richness and northern purity from the northern hemisphere, resulting from dispersal from glacial refugia. This implies that in higher latitudes of both hemispheres genetic diversity may decrease with increasing distance from the refugium. For C. chilensis sensu lato, it seems likely that long‐distance dispersal via rafting on the Desaguadero River led to the foundation of the southernmost populations in northern Patagonia during the Holocene.  相似文献   

2.
Ostrea chilensis (Küster, 1844), the flat oyster, is native to Chile and New Zealand. In Chile, it occurs in a few natural beds, from the northern part of Chiloé Island (41 ºS) to the Guaitecas Archipelago (45 ºS). This bivalve is slow growing, broods its young, and has very limited dispersal potential. The Ostrea chilensis fishery has been over-exploited for a number of decades such that in some locations oysters no longer exist. The aim of this study was to study the genetic diversity of the Chilean flat oyster along its natural distribution to quantify the possible impact of the dredge fishery on wild populations. The genetic structure and diversity of Ostrea chilensis from six natural beds with different histories of fishing activity were estimated. Based on mitochondrial (Cytb) and nuclear (ITS1) DNA sequence variation, our results provide evidence that genetic diversity is different among populations with recent history of wild dredge fishery efforts. We discuss the possible causes of these results. Ultimately, such new information may be used to develop and apply new management measures to promote the sustainable use of this valuable marine resource.  相似文献   

3.
The spatial genetic structure (and gene flow) of parasites with complex life cycles, such as digeneans, has been attributed mainly to the dispersion ability of the most mobile host, which most often corresponds to the definitive host (DH). In this study, we compared the genetic structure and diversity of adult Neolebouria georgenascimentoi in two fish species (DHs) that are extensively distributed along the south‐eastern Pacific (SEP). The analysis was based on the cytochrome oxidase subunit I gene sequences of parasites collected between 23°S and 45°S. In total, 202 sequences of N. georgenascimentoi in Pinguipes chilensis isolated from nine sites and 136 sequences of Prolatilus jugularis from five sites were analysed. Our results showed that N. georgenascimentoi is a species complex that includes three different parasite species; however, in this study, only lineage 1 and 2 found in P. chilensis and P. jugularis, respectively, were studied because they are widely distributed along the coastline. Lineage 1 parasites had two common haplotypes with wide distribution and unique haplotypes in northern sites. Lineage 2 had only one common haplotype with wide distribution and a large number of unique haplotypes with greater genetic diversity. Both lineages have experienced recent population expansion. Only lineage 1 exhibited a genetic structure that was mainly associated with a biogeographical break at approximately 30°S along the SEP. Our finding suggests that host access to different prey (=intermediate hosts) could affect the genetic structure of the parasite complex discovered here. Consequently, difference between these patterns suggests that factors other than DH dispersal are involved in the genetic structure of autogenic parasites.  相似文献   

4.
Prosopis chilensis and Prosopis flexuosa (Fabaceae) are closely related hardwood arboreal species that are widely distributed in the arid regions of Argentina. The development of highly polymorphic markers, such as microsatellites, is desirable for genetic studies of these species. Here, we present the development and characterization of six polymorphic microsatellite markers in P. chilensis and P. flexuosa. These markers showed a polymorphism information content between 0.14 and 0.85 and the number of alleles varied from two to 13 considering both species. All markers revealed a broad cross‐species affinity when tested in seven other Prosopis species. All primers amplified in at least five species.  相似文献   

5.
The Cimicidae is a family of blood‐dependent ectoparasites in which dispersion capacity is greatly associated with host movements. Bats are the ancestral and most prevalent hosts for cimicids. Cimicids have a worldwide distribution matching that of their hosts, but the global classification is incomplete, especially for species outside the most common Cimicidae taxa. In this study, we place a little‐studied cimicid species, Bucimex chilensis, within a comprehensive molecular phylogeny of Cimicidae by sequencing the genomic regions of this and other closely related species. For this study, we collected B. chilensis females from Myotis chiloensis in Tierra del Fuego, 1,300 km further south than previously known southernmost distribution boundary. We also sequenced COI regions from Primicimex cavernis, a species which together with B. chilensis comprise the entire subfamily Primiciminae. Using Bayesian posterior probability and maximum‐likelihood approaches, we found that B. chilensis and P. cavernis clustered close to each other in the molecular analyses, receiving support from similar morphological features, agreeing with the morphology‐based taxonomic placement of the two species within the subfamily Primiciminae. We also describe a previously unrecognized morphological adaptation of the tarsal structure, which allows the austral bat ectoparasite, B. chilensis, to cling on to the pelage of its known host, the Chilean myotis (Myotis chiloensis). Through a morphological study and behavioral observation, we elucidate how this tarsal structure operates, and we hypothesize that by clinging in the host pelage, B. chilensis is able to disperse effectively to new areas despite low host density. This is a unique feature shared by P. cavernis, the only other species in Primiciminae.  相似文献   

6.
Molecular markers belonging to three different genomes, mitochondrial (cox2‐3 spacer), plastid (RUBISCO spacer), and nuclear (internal transcribed spacer 1), were used to compare Gracilaria chilensis samples collected along the Chilean coast with samples ascribed to G. chilensis from the West Pacific Ocean (New Zealand and Australia). Our data are in agreement with previous studies suggesting two sibling species currently going under the name G. chilensis that co‐occur in New Zealand. One of these, a New Zealand sample previously examined by Bird and others in 1990, is conspecific with G. chilensis from Chile. Finally, our results demonstrate clearly that most of the sequences in GenBank reported as G. chilensis are based on misidentified material.  相似文献   

7.
The study of the genetic variation of early height growth traits in seedlings helps to predict the possible outcomes of tree populations in the face of climate change. Second‐year height growth of 10 geographically marginal populations of Patagonian cypress (Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri) (Cupressaceae) was characterized under greenhouse conditions. Variation among and within an average of 15 open‐pollinated families (comprising 21 seedlings per family) for each population was analysed for six size and timing traits obtained from fitted Boltzmann growth curves. The among‐family and among‐population variances were 4.03% and 2.74% of the total phenotypic variation, while the residual variance was 84.57% on average. Genetic differentiation among populations was low, except for the maximum growth rate (QST = 0.35) and for growth initiation (QST = 1). For most traits, genetic variation and heritability were variable across populations, except for growth initiation, which showed in general null intra‐population levels of genetic variance. Although no direct associations were found between the additive genetic variation and latitude or altitude, the north range of the distribution was more variable for the pool of the analysed traits. Although most extreme‐marginal populations of A. chilensis would be very limited in their ability to evolve if climate in north‐west Patagonia turns drier and warmer, their long‐term persistence could largely rely on a phenotypic diversification strategy.  相似文献   

8.
In South America, 94% of dry‐temperate lands present some degree of environmental degradation, highlighting the need for ecological restoration. We analyzed geographic patterns of genetic variation in Austrocedrus chilensis, a dominant conifer of the steppe‐forest ecotone in the eastern Andes, to examine its potential for restoration. We sampled 67 locations in Argentina and estimated genetic parameters to determine the effects of historical factors affecting diversity, together with inbreeding and gene flow, using 12 allozyme loci. Genetic diversity decreased southwards in eastern populations, which are marginal for the range of the species and patchily distributed, while high genetic admixture was detected in continuous western populations, possibly reflecting postglacial migrations from northern and eastern sources. Higher inbreeding (FIS > 0.14) was recorded in northern compared with southern populations, attributed to the impact of recent bottlenecks resulting from anthropogenic fires. Gene flow was found to be moderate overall (FST = 0.12). The implications of these results for restoration actions focusing on Austrocedrus were explored. Relatively small, inbred yet genetically diverse northern populations should be the subject of passive restoration efforts, while experimental common gardens should be established toward the south, to support active restoration approaches. This illustrates how ahead of time information on patterns of genetic variation can support restoration efforts for dryland tree species.  相似文献   

9.
Analysis of genetic diversity represents a fundamental component of ecological risk assessments in contaminated environments. Many studies have assessed the genetic implications of chronic radiation exposure at Chernobyl, generally recording an elevated genetic diversity and mutation rate in rodents, plants, and birds inhabiting contaminated areas. Only limited studies have considered genetic diversity in aquatic biota at Chernobyl, despite the large number of freshwater systems where elevated dose rates will persist for many years. Consequently, the present study aimed to assess the effects of chronic radiation exposure on genetic diversity in the freshwater crustacean, Asellus aquaticus, using a genome‐wide SNP approach (Genotyping‐by‐sequencing). It was hypothesized that genetic diversity in A. aquaticus would be positively correlated with dose rate. A. aquaticus was collected from six lakes in Belarus and the Ukraine ranging in dose rate from 0.064 to 27.1 µGy/hr. Genotyping‐by‐sequencing analysis was performed on 74 individuals. A significant relationship between geographical distance and genetic differentiation confirmed the Isolation‐by‐Distance model. Conversely, no significant relationship between dose rate and genetic differentiation suggested no effect of the contamination gradient on genetic differentiation between populations. No significant relationship between five measures of genetic diversity and dose rate was recorded, suggesting that radiation exposure has not significantly influenced genetic diversity in A. aquaticus at Chernobyl. This is the first study to adopt a genome‐wide SNP approach to assess the impacts of environmental radiation exposure on biota. These findings are fundamental to understanding the long‐term success of aquatic populations in contaminated environments at Chernobyl and Fukushima.  相似文献   

10.
Fleas associated with small mammals from seven localities from northern and central Chile were assessed. We captured 352 small mammals belonging to 12 species from which we obtained 675 fleas belonging to 15 different species. The most frequently captured flea species were Neotyphloceras crassispina crassispina (n = 198) and N. chilensis (n = 175). High values of flea species richness and diversity were found in Fray Jorge National Park (NP), a north‐central Chilean site, whereas the highest values of mean abundance (MA) and prevalence were found in three diverse sites that include Los Molles River, a high altitude site located in north‐central Chile, Fray Jorge NP and Dichato, in south‐central Chile. On the other hand, high values of flea richness and diversity were found on two rodent species, Abrothrix olivacea and A. longipilis, whereas the highest values of MA and prevalence were found on Oligoryzomys longicaudatus, A. longipilis and Phyllotis xanthopygus. A total of three new host recordings, nine new localities and nine new host species and locality recordings are reported. Also, this study represents the first known record of Tetrapsyllus (Tetrapsyllus) comis in Chile and the first ecological analysis of Neotyphloceras chilensis.  相似文献   

11.
Wang XY  Shen DW  Jiao J  Xu NN  Yu S  Zhou XF  Shi MM  Chen XY 《Molecular ecology》2012,21(10):2542-2551
Although genetic diversity is very important for alien species, which have to cope with new environments, little is known about the role that genetic diversity plays in their invasive success. In this study, we set up a manipulation experiment including three levels of genotypic diversity to test whether genotypic diversity can enhance the invasive ability of alien species, in our case the invasive Spartina alterniflora in China, and to infer the underlying mechanisms. There was no significant relationship between genotypic diversity and parameters of performance in the first year; however, from the summer of the second year onwards, genotypic diversity enhanced four of the six parameters of performance. After two growing seasons, there were significant positive relationships between genotypic diversity and maximum spread distance, patch size, shoot number per patch, and aboveground biomass. Moreover, abundance of the native dominant species Scirpus mariqueter was marginally significantly decreased with genotypic diversity of S. alterniflora, suggesting that enhanced invasive ability of S. alterniflora may have depressed the growth of the native species. There was no significant difference in most measures of performance among six genotypes, but we observed a transgressive over performance in four measures in multiple‐genotype patches. At the end of the experiment, there were significant nonadditive effects of genotypic diversity according to Monte Carlo permutations, in six‐genotype, but not three‐genotype plots. Our results indicated that both additive and nonadditive effects played roles in the positive relationship between genetic diversity and invasion success, and nonadditive effects were stronger as duration increased.  相似文献   

12.
Studying population structure and genetic diversity at fine spatial scales is key for a better understanding of demographic processes that influence population connectivity. This is particularly important in marine benthic organisms that rely on larval dispersal to maintain connectivity among populations. Here, we report the results of a genetic survey of the ascidian Pyura chilensis from three localities along the southeastern Pacific. This study follows up on a previous report that described a genetic break in this region among localities only 20 km apart. By implementing a hierarchical sampling design at four spatial levels and using ten polymorphic microsatellite markers, we test whether differences in fine‐scale population structure explain the previously reported genetic break. We compared genetic spatial autocorrelations, as well as kinship and relatedness distributions within and among localities adjacent to the genetic break. We found no evidence of significant autocorrelation at the scale up to 50 m despite the low dispersal potential of P. chilensis that has been reported in the literature. We also found that the proportion of related individuals in close proximity (<1 km) was higher than the proportion of related individuals further apart. These results were consistent in the three localities. Our results suggest that the spatial distribution of related individuals can be nonrandom at small spatial scales and suggests that dispersal might be occasionally limited in this species or that larval cohorts can disperse in the plankton as clustered groups. Overall, this study sheds light on new aspects of the life of this ascidian as well as confirms the presence of a genetic break at 39°S latitude. Also, our data indicate there is not enough evidence to confirm that this genetic break can be explained by differences in fine‐scale genetic patterns among localities.  相似文献   

13.
Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as “green tides”, having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications. Despite the increasing interest in the genus Ulva, particularly on the larger foliose species for aquaculture, their inter‐ and intra‐specific genetic diversity is still poorly described. We compared the cytoplasmic genome (chloroplast and mitochondrion) of 110 strains of large distromatic foliose Ulva from Ireland, Brittany (France), the Netherlands and Portugal. We found six different species, with high levels of inter‐specific genetic diversity, despite highly similar or overlapping morphologies. Genetic variation was as high as 82 SNPs/kb between Ulva pseudorotundata and U. laetevirens, indicating considerable genetic diversity. On the other hand, intra‐specific genetic diversity was relatively low, with only 36 variant sites (0.03 SNPs/kb) in the mitochondrial genome of the 29 Ulva rigida individuals found in this study, despite different geographical origins. The use of next‐generation sequencing allowed for the detection of a single inter‐species hybrid between two genetically closely related species, U. laetevirens, and U. rigida, among the 110 strains analyzed in this study. Altogether, this study represents an important advance in our understanding of Ulva biology and provides genetic information for genomic selection of large foliose strains in aquaculture.  相似文献   

14.
Juniperus drupacea is an eastern Mediterranean mountain tree with a disjunct geographical range. We hypothesized that this disjunct occurrence (the Peloponnese in Europe and the Taurus and Lebanon Mountains in Asia) should be reflected in the patterns of genetic and morphological diversity and differentiation. Nuclear microsatellite markers (nSSR) and biometric variables of the cones and seeds were examined on material sampled from four populations in Europe and eight in Asia. The Asian populations were characterized by a higher level of genetic diversity than the European populations. The genetic differentiation among populations was moderate but significant (FST = 0.101, < 0.001). According to the clustering performed with BAPS, six genetically and geographically groups of populations were found: I and II from the Peloponnese; III from the Taurus Mountains; IV and V from the Anti‐Taurus Mountains; and VI from the Lebanon Mountains. The level of genetic differentiation among these six groups (4.30%, P = 0.012) probably reflects long‐lasting genetic isolation during the Pleistocene, as limited genetic admixture was found. In accordance with genetic analysis, the biometric investigations indicated a high level of morphological divergence between the European and Asian populations of the species, with further differentiation between the populations from the Taurus and Lebanon Mountains.  相似文献   

15.
We examined genetic variation in the Oriental fruit fly, Bactrocera dorsalis (Hendel), using six populations in two regions of Yunnan Province, China, to determine the distribution and likely mechanism for the dispersal of this fly. A 501‐bp portion of the mitochondrial cytochrome oxidase gene was sequenced from a minimum of eight individuals from each population, and 43 haplotypes were observed in the six Bactrocera dorsalis populations. When comparing the genetic diversity of populations in the northern and southern regions, which differ with respect to elevation, climate and plant phenology, we found a significantly greater haplotype diversity in the southern region (permutation test; P < 0.05), suggesting that the northern populations, those at Kunming and Qujing, probably originated from somewhere in the southern region. FST and number of pairwise differences revealed a high level of differentiation between the Panxi population and the other populations (permutation test; P < 0.05). Although the difference was marginally insignificant, the Shuitang population seemed to have differentiated from both northern populations. The Mantel test did not detect any isolation due to geographic distance. An amova analysis found that 2.56% of the variance was caused by the Panxi population. Haplotype network analysis showed that none of the six populations had a specific genetic lineage. Together, these analyses suggest that long‐distance dispersal has occurred for this species, and the species most probably took advantage of both a mountain pass and prevailing air currents. The Panxi population was significantly isolated from the others, probably because of its distinguishing habitat features, host plants or the recent reduction of the population size.  相似文献   

16.
Ipomoea microdactyla Griseb. (Convolvulaceae) is restricted to the Bahamian archipelago, Cuba, and southeastern Florida. The species is listed as a state endangered species in Florida, where it is mostly restricted to the hyperfragmented pine rockland of Miami‐Dade County. Using seven DNA microsatellite loci, we assessed levels of genetic diversity for 12 populations of this species from Andros Island in the Bahamas (six sites), Cuba (one site), and Florida (five sites). We found significantly greater mean numbers of alleles, and higher mean values for both observed and expected heterozygosity in populations from the continuous forest on Andros than those from the habitat fragments in Florida. It is unknown if these patterns of genetic diversity in the Florida populations are the result of habitat fragmentation or founder effects. The population from Cuba exhibited relatively high levels of genetic variation, suggesting that this island is a major center of diversity and dispersal for this species. It appears that hybrid introgression for I. carolina alleles within I. microdactyla individuals occurred at a single site on Andros Island. Overall, the mean inbreeding coefficient value was 0.089, suggesting low levels of inbreeding. The highest inbreeding coefficient values were mostly recorded in Florida. Two groups were revealed, one containing the populations from Florida, and the second one encompassing those from the Bahamas and Cuba. Our results highlight the negative genetic consequences of habitat fragmentation and support initiatives recently established to establish corridors to connect the remnants of the pine forest of the Miami‐Dade County.  相似文献   

17.
Western populations of the Italian agile frog (Rana latastei) experience widespread genetic depletion. Based on population genetic theory, molecular models of immunity and previous empirical studies, population genetic depletion predicts increased susceptibility of populations to emergent pathogens. We experimentally compared susceptibility of R. latastei populations upon exposure to an emerging strain of Ranavirus, frog virus 3 (FV3), using six populations spanning the geographical range and range of population genetic diversity found in nature. Our findings confirm this prediction, suggesting that the loss of genetic diversity accompanying range expansion and population isolation is coincident with increased mortality risk from an emergent pathogen. Loss of heterozygosity and escape from selection imposed by immunologically cross‐reactive pathogens may potentially generate range‐wide variation in disease resistance.  相似文献   

18.
1. Only a few studies have compared patterns of genetic variation among populations of different Daphnia species on a regional scale. The present study addresses this gap and examines the relationship between diversity as revealed by allozyme variation and habitat size for populations of Daphnia pulex, D. obtusa and D. curvirostris in Flanders (Belgium). In addition, we examined whether patterns of isolation‐by‐distance could be observed in each of these three Daphnia species. 2. The relationship between genetic diversity and habitat size varied among Daphnia species that occur in the same region. In D. pulex and D. obtusa populations, a positive relationship between local genetic diversity and habitat size was found, whereas the relationship was negative in D. curvirostris populations. 3. Regional genetic diversity was lower than expected from patterns of local genetic diversity in D. pulex and D. obtusa populations in Flanders. This suggests that the subdivision of local Daphnia populations in a region did not obviously increase genetic diversity. 4. Genetic differentiation among populations of these three species in Flanders was moderate and comparable with values observed in other Daphnia species. Patterns of isolation‐by‐distance could be observed, but the scatter was high (D. pulex) or the slope was very low (D. obtusa).  相似文献   

19.
Total length (TL) at first sexual maturity was estimated for Atlantoraja castelnaui and Dipturus chilensis from the south‐western Atlantic Ocean. Total length at which 50% of the females were captured (50% c) was less than the TL at first sexual maturity (ML) in both species. Immature females are being captured and thus will not become sexually mature to reproduce because of early fishing mortality. Females of A. castelnaui and D. chilensis reach sexual maturity at TLs of 110–114 cm and 102–106 cm, respectively. Males mature with TL between 91 and 95 cm for A. castelnaui and between 83 and 87 cm for D. chilensis.  相似文献   

20.
Gynostemma pentaphyllum, a member of family Cucurbitaceae, is a perennial creeping herb used as a traditional medicinal plant in China. In this study, six polymorphic nSSR and four EST‐SSR primers were used to genotype 1,020 individuals in 72 wild populations of G. pentaphyllum. The genetic diversity and population structure were investigated, and ecological niche modeling was performed to reveal the evolution and demographic history of its natural populations. The results show that G. pentaphyllum has a low level of genetic diversity and high level of variation among populations because of pervasive asexual propagation, genetic drift, and long‐term habitat isolation. Results of the Mantel test demonstrate that the genetic distance and geographic distance are significantly correlated among G. pentaphyllum natural populations. The populations can be divided into two clusters on the basis of genetic structure. Asymmetrical patterns of historical gene flow were observed among the clusters. For the contemporary, almost all the bidirectional gene flow of the related pairs was symmetrical with slight differences. Recent bottlenecks were experienced by 34.72% of the studied populations. The geographic range of G. pentaphyllum continues to expand northward and eastward from Hengduan Mountains. The present distribution of G. pentaphyllum is a consequence of its complex evolution. Polyploidy in G. pentaphyllum is inferred to be polygenetic. Finally, G. pentaphyllum is a species in need of protection, so in situ and ex situ measures should be considered in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号