首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite a large consensus on increasing facilitation among plants with increasing stress in alpine regions, a number of different outcomes of interaction have been observed, which impedes the generalisation of the ‘stress‐gradient hypothesis’ (SGH). With the aim to reconcile the different viewpoints on the stress‐interaction relationship in alpine environments we hypothesized that fine nurse variations within a single life form (cushion) may explain this pattern variability. To test this hypothesis, we compared the magnitude of the stress‐interaction relationship in a single study area with that observed in existing studies involving cushions, worldwide. We characterized the nurse effects of cushions on the whole plant community at inter‐specific, intra‐specific and intra‐individual levels along a stress gradient in the dry, alpine tropics of Bolivia (4400 m, 4700 m and 4900 m a.s.l). Using a relative index of interaction (RII) we included our data in a meta‐analysis on the nurse effects of cushions along alpine gradients, worldwide. At inter‐specific level, the loose cushion Pycnophyllum was a better nurse than the compact Azorella compacta. However, at intra‐individual level facilitation was higher at the periphery than at the centre of cushions, exceeding in magnitude the variation observed at inter‐specific level. This pattern was associated with higher minimum temperature and lower mortality at the periphery of cushions. The net effects of cushions on plant communities became more positive at higher elevation, corroborating the SGH. Within our single site in Bolivia, fine morphological nurse variations captured a similar variability in the stress‐interaction relationship as that observed in a subset of studies on cushions on a worldwide scale. This suggests that fine variations in nurse traits, in general those not considered in protocols dealing with facilitation or in restoration/conservation management plans, explain in part the current discrepancies among SGH studies in alpine regions.  相似文献   

2.
A permanent plot in a low-alpine cushion/tussock/shrub community was mapped at ca. decade intervals from 1953 to 1984. Transition probabilities between vegetation types were calculated, and a Markovian model was fitted.In spite of non-stationarity a Markov model was consistent with the observations, and produced reasonable predictions, especially for the major components of the vegetation. The model predictions were conservative in terms of future changes, in that future changes would be smaller than those observed, but such predictions could be supported by independent evidence, such as the nature of the non-stationarity, plant counts and seedling numbers.The general pattern was of a decrease in the cover of both Chionochloa rigida tussocks and mixed turf, and an increase in the cover of cushion bog species, especially Donatia novae-zelandiae. Shrubs, the suggested climax, showed no tendency to increase. Known climatic changes cannot explain the trend, which therefore seems to be a local retrogressive succession. There may be a cycle of alternating cushion and turf.  相似文献   

3.

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

4.
Alpine ecosystems are among those biomes that are most vulnerable to climate change. Cushion plants are an important life form of alpine ecosystems and will likely play a critical role for the resilience of these habitats to climate change. We studied cushion size distribution and different measures of the compactness of cushions (biomass and rosette density, leaf area index) of the cushion plant, Androsace tapete along an elevational gradient from 4500 to 5200 m a.s.l. in the Nyainqentanglha Mountains of the central Tibetan Plateau. Cushion size distribution, total cover, and compactness of cushions varied substantially along the elevational gradient. At the driest site at low elevation we found the lowest total cushion cover, a particularly high proportion of very small cushions, and the most compact cushions (highest rosette and biomass densities, and leaf area index (LAI) per cushion). Our results indicate that in the semi‐arid Tibetan Plateau water availability is the more important climate factor than temperature affecting cushion plant traits and morphology.  相似文献   

5.
Question: In stressful abiotic environments positive plant interaction is expected to be a frequent and an important process driving community composition and structure. In the high Andes in central Chile, the cushion plant Azorella madreporica dominates plant communities and appears to benefit the assemblage of species that grows within it. However, there are also many other species that grow outside this nurse cushion plant, which may or may not interact with this species. What is the prevailing type of spatial associations among the plant species that are not growing inside the nurse plant? What is the type of interactions between cushion plants and those species growing outside them? Location: Molina River basin (33°20'S, 70°16’ W, 3600 m a.s.l.), in the Andes of central Chile, ca. 50 km east of Santiago. Methods: Two accurate mapping plots of individual plants of different species were located at two summits (Franciscano and Tres Puntas sites). The spatial distributions and associations between species growing outside cushions and within cushions at each site were estimated by point‐pattern analyses using the univariate and bivariate transformations of Ripley's K‐functions. Results: We found both positive and, especially, negative spatial associations (8 out of 12 species in Franciscano site) between A. madreporica cushions and plants growing outside them. However, most of the species showed positive spatial associations among them. The variation in spatial association was site‐specific and also depended on the type of plants involved. Adesmia spp., the second most abundant non‐cushion species, displayed negative associations with cushions and positive associations with other species growing outside cushions. Conclusions: Our study suggests very complex interactions among species, which ranged from positive to negative, and are also affected by abiotic environmental conditions.  相似文献   

6.
Abstract We developed multiple a priori hypotheses to link the observed spatial patterns with colonisation processes in the high alpine cushion plant, Azorella madreporica. We conducted this study in the Molina River basin (33°20′ S, 70°16′ W, 3600 m a.s.l.), in the Andes of central Chile, approximately 50 km east of Santiago. We mapped and measured size (as a surrogate for age) of individual cushions in two populations and used a standard spatial analytical tool (semivariograms) to test our alternative a priori hypotheses related to colonisation mode of the cushion species. In both populations, the size distribution of A. madreporica reflected a negative exponential or inverse‐J pattern, typical of uneven‐aged populations, where most of the cushions belonged to relatively smaller size classes, in effect, a regular success in the establishment of seedlings, where all size classes of cushions were represented in the population. The results were site‐specific, where best‐fit semivariograms for spatial cushion's size distribution suggested a gradual colonisation in one population and an episodic colonisation in the other population. Microsite distribution proved to be homogeneous at both sites. Thus, the study of the spatial explicit size‐age population distribution of an alpine species provides valuable information about the frequency, magnitude and site variation of the reproductive pulses in these harsh environments.  相似文献   

7.
Petr Sklenář 《Flora》2009,204(4):270-277
Cushion plants are a common growth form in the equatorial páramo vegetation and their surfaces are often colonized by other plants. This paper analyzes the effect of the cushion plants on the community diversity at 4650 m on the eastern slope of the Iliniza volcano in Ecuador. Ninety sample plots of 1 m2 size were located in the study area and were divided into 25 subplots in which presence and abundance of plant species was recorded. The community diversity was expressed as species richness, Simpson's diversity index, and evenness. Correlation between the cushion species and the composition of the colonists was measured with the CCA ordination analysis, correlation between the cushion cover and community diversity was measured by means of correlation analysis. Randomized species–area curves were used to compare richness of plant communities with and without the cushions. A total of 32 species were found including five cushion plants. Most species preferred to grow on the cushion surface whereas only a few species were able to colonize open ground. Species richness and Simpson's index were significantly correlated to the cushion area but no correlation was found for evenness. The cushions were usually composed of more than one species which hampered the examination of the cushion–colonist specific relationships. Nevertheless, cushions of Azorella and Arenaria seemed to provide more favorable habitat for colonization than the other cushion species. Comparison with an earlier study made on Iliniza indicates that the presence of the cushions significantly increases the richness of the plant community.  相似文献   

8.
Arroyo  M.T.K.  Cavieres  L.A.  Peñaloza  A.  Arroyo-Kalin  M.A. 《Plant Ecology》2003,169(1):121-129
Low growing, compact cushion plants are a common and often dominant life form in temperate and subpolar alpine habitats. The cushion life-form can modify wind patterns, temperature and water availability and thus cushion species could be expected to act as nurse-plants facilitating the establishment of other alpine plant species on their surfaces. It has been suggested that the nurse effect should be most pronounced under more stressful environmental conditions, as found with increasing elevation in the alpine. One of the approaches used to detect the nurses has been the study of spatial associations among species, in which extreme clumping within or beneath one species has been interpreted as evidence of nursing. We characterized microclimatic conditions (soil and air temperature) within and outside cushions of Azorella monantha at two elevations (700 m a.s.l., corresponding to an elevation just above treeline, and 900 m a.s.l., corresponding to the upper limit of the cushion belt zone) on Cerro Diente in the Patagonian alpine of southern South America (50° S) and recorded all plant species growing upon cushions of various sizes and for paired sampling areas of equivalent sizes outside cushions. At 5 cm depth, soil temperature was slightly higher under cushions than under bare ground, but only significantly so at 900 m. Air temperature at ground level was significantly higher in the cushion microhabitat at both 700 m and 900 m, with the difference being more exaggerated at the highest elevation. At 700 m, a total of 27 species were recorded growing within cushions as compared to 29 outside cushions. At 900 m the corresponding numbers were 34 and 18. At the highest elevation, significantly more species grow within cushions than for equal areas outside cushions. Here moreover, 17 (48.6%) species grew preferentially within cushions, with eight of the latter being limited to the cushion microhabitat at this elevation. However, at 700 m there was no significant difference in species richness in the two microhabitats, and only one species (3.1%) grew preferentially on cushions. Considering individual species, nine occurring at both elevations showed non-preferential recruitment on cushions at 700 m, but significantly higher frequencies on cushions at 900 m. Results suggest striking altitudinal variation in the association with Azorella monantha on Cerro Diente, ranging from a very strong at 900 m to near absence at 700 m. Milder air and soil temperatures, shelter from wind, and greater water availability within cushions as opposed to outside cushions are discussed as possible factors favoring strong plant recruitment on cushions at higher elevations in the harsh Patagonian alpine environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Determining which drivers lead to a specific species assemblage is a central issue in community ecology. Although many processes are involved, plant–plant interactions are among the most important. The phylogenetic limiting similarity hypothesis states that closely related species tend to compete stronger than distantly related species, although evidence is inconclusive. We used ecological and phylogenetic data on alpine plant communities along an environmental severity gradient to assess the importance of phylogenetic relatedness in affecting the interaction between cushion plants and the whole community, and how these interactions may affect community assemblage and diversity. We first measured species richness and individual biomass of species growing within and outside the nurse cushion species, Arenaria tetraquetra. We then assembled the phylogenetic tree of species present in both communities and calculated the phylogenetic distance between the cushion species and its beneficiary species, as well as the phylogenetic community structure. We also estimated changes in species richness at the local level due to the presence of cushions. The effects of cushions on closely related species changed from negative to positive as environmental conditions became more severe, while the interaction with distantly related species did not change along the environmental gradient. Overall, we found an environmental context‐dependence in patterns of phylogenetic similarity, as the interaction outcome between nurses and their close and distantly‐related species showed an opposite pattern with environmental severity.  相似文献   

10.
Question: Does the facilitative effect of cushion plants increase with elevation as a result of increases in environmental harshness? Does this hypothesis apply in the Sino‐Himalayan Mountains? Location: Lakaka Pass on the Baima Snow Mountains (28°20′N, 99°05′E), SW China. Methods: We evaluated the spatial association of several plant species with the cushion plant Arenaria polytrichoides (Caryophyllaceae) at two elevations (4500 m and 4700 m) in the study site and monitored temperature, moisture and nutritional status of soil beneath and outside the cushions. Results: While 14 species grow more frequently associated with the cushions at the higher elevation, at the lower site only three species were positively associated with cushions. Eleven of the species that occurred at both elevations changed their spatial association from neutral or negative with cushions at the lower site to positive at the higher elevation site. Substrate temperatures were rather similar between the cushions and areas of bare ground. Cushions maintained higher moisture than areas of bare ground at both elevations. Soils beneath cushions contained significantly more available nitrogen and potassium compared to open areas at the higher elevation. Conclusions: Our results show that facilitation by A. polytrichoides cushions increases with elevation in the Sino‐Himalayan region. This facilitation effect of A. polytrichoides cushions is probably due to the improved nutrient availability provided by cushion plants in the higher elevation, and these conditions probably permit increased plant recruitment, growth and survival.  相似文献   

11.
Ecosystem engineers are organisms able to modulate environmental forces and, hence, may change the habitat conditions for other species. In so doing, ecosystem engineers may affect both species richness and evenness of communities and, in consequence, change species diversity. If these changes in community attributes are related to the magnitude of the habitat changes induced by the engineers, it seems likely that engineer species will have greater effects on diversity in sites where they cause larger habitat changes. We addressed this issue by evaluating the effects of three alpine cushion plants on species richness, evenness, and diversity of high-Andean plant communities. Given that the difference in microclimatic conditions between cushions and the external environment increases with elevation, we proposed that these organisms should have greater effects on community attributes at higher than at lower elevation sites. Results showed that the three cushion species had positive effects on species richness, diversity, and evenness of plant communities. It was also observed that the magnitude of these effects changed with elevation: positive effects on species richness and diversity increased towards upper sites for the three cushions species, whereas positive effects on evenness increased with elevation for one cushion species but decreased with elevation for other two cushion species. These results suggest that the presence of cushions is important to maintain plant diversity in high-Andean communities, but this positive effect on diversity seems to increase as the difference in environmental conditions between cushions and the external environment increases with elevation.  相似文献   

12.
Abstract Results are presented on vascular species richness in three representative alpine plant communities at 1040–1410 m on Mt Burns in the perhumid Fiordland region, a hotspot of alpine plant diversity, in south‐western South Island, New Zealand. Overall species richness was not dissimilar between the three communities in any of the eight plot sizes (mean values of 20.8–24.4 species in the largest plots of 100 m2), even though coefficients of floristic similarity were small (17.9; 23.5) between both low‐alpine communities (snow tussock‐shrubland and snow tussock grassland) and the high‐alpine cushion fellfield. Vascular species richness was generally similar to that in the few other oceanic New Zealand alpine communities for which data are available. The decline in richness from the low‐alpine to high‐alpine zones, revealed in more comprehensive records from two other regions with generally similar oceanic environments, was not recorded, indeed was reversed, on Mt Burns. Whether the recognized biodiversity hotspot of Fiordland has a generally richer high‐alpine flora than other regions in New Zealand needs further examination. The general pattern of alpine floristic richness in relation to elevation, in New Zealand, also prevails in most alpine regions abroad, usually under much more extreme continental environments. This pattern is usually ascribed to the associated decrease in temperature. Both the small size of the land mass and/or associated environmental conditions may be implicated but clarification awaits further data, preferably collected with standardized procedures.  相似文献   

13.
Cold adapted plants, such as cushion plants, may be particularly sensitive to climate warming because of their compact growth form and high branch density. In the oceanic southern hemisphere, cushion communities tend to have large range distributions at low latitudes (sea level to low alpine), thus providing an opportunity to test the effects of temperature on plant morphology and reproduction across gradients. Using Donatia novae‐zelandiae as a model species, we compared the leaf morphology, reproduction and responses to warming. Two low‐alpine sites (Maungatua (880 m a.s.l.), Blue Mountains (1000 m a.s.l.)) and two sea‐level sites (Waituna 1 (0 m a.s.l.), Waituna 2 (0 m a.s.l.)) in South Island, New Zealand were used. Donatia novae‐zelandiae cushions differed significantly between the high‐elevation and sea‐level sites both morphologically and in terms of reproduction. High‐elevation cushions produced more flowers (threefold more flowers per plant) and seeds (sevenfold more seeds per capsule) than at sea level, but leaves were larger at sea level (in length and specific leaf area). The cushions were also twice as compact at the high‐elevation sites. After two growing seasons of artificial warming, seed production (35%), leaf length (7%) and width (13%), and specific leaf area (63%) significantly decreased in D. novae‐zelandiae plants; flower production was not significantly affected. Cushion plant morphology and reproduction were significantly affected by environmental drivers at their establishment sites, but all populations responded negatively to artificial warming of 1–3°C. Many cushion plants are considered keystone species because of their propensity to facilitate the growth and establishment of other plant species, the inferred negative effects of global warming on cushion plant species may have a cascading effect on other alpine plant groups.  相似文献   

14.
Glacier chronosequences are important sites for primary succession studies and have yielded well‐defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant‐associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root‐associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non‐replacement). At both sites, the root‐associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal community's successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional‐replacement successional trajectory, and the arctic site displayed a directional‐non‐replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root‐associated fungi. The need for further replicated study, including in other host species, is emphasized.  相似文献   

15.
Abstract. Little is known of the dynamics of the alpine cushion plant communities of Tasmania. The present study investigates the nature of the short (5 yr) and long (850 yr plus) term dynamics within one such community at Newdegate Pass, Tasmania. This involved observations of permanent plots, quadrat sampling of cushion heath in different stages of a secondary succesion and cuticular analysis of a core through the cushion peat. Data from the peat core showed the continued presence of the cushion heath community at this site for at least 850 yr, while the regeneration patterns indicated community composition was largely achieved by species accumulation rather than species replacement. Over a 5–yr period there was little or no change in total percentage cover yet a surprisingly high degree of interspecific competition for space in areas of complete plant cover. These observations best fit non equilibrium models of community succession and stability.  相似文献   

16.

Background

Cushion plants are commonly considered as keystone nurse species that ameliorate the harsh conditions they inhabit in alpine ecosystems, thus facilitating other species and increasing alpine plant biodiversity. A literature search resulted in 25 key studies showing overwhelming facilitative effects of different cushion plants and hypothesizing greater facilitation with increased environmental severity (i.e. higher altitude and/or lower rainfall). At the same time, emerging ecological theory alongside the cushion-specific literature suggests that facilitation might not always occur under extreme environmental conditions, and especially under high altitude and dryness.

Methods

To assess these hypotheses, possible nursing effects of Thylacospermum caespitosum (Caryophyllaceae) were examined at extremely high altitude (5900 m a.s.l.) and in dry conditions (precipitation <100 mm year−1) in Eastern Ladakh, Trans-Himalaya. This is, by far, the highest site, and the second driest, at which the effects of cushions have been studied so far.

Key Results

In accordance with the theoretical predictions, no nursing effects of T. caespitosum on other alpine plants were detected. The number and abundance of species were greater outside cushions than within and on the edge of cushions. None of the 13 species detected was positively associated with cushions, while nine of them were negatively associated. Plant diversity increased with the size of the area sampled outside cushions, but no species–area relationship was found within cushions.

Conclusions

The results support the emerging theoretical prediction of restricted facilitative effects under extreme combinations of cold and dryness, integrating these ideas in the context of the ecology of cushion plants. This evidence suggests that cases of missing strong facilitation are likely to be found in other extreme alpine conditions.  相似文献   

17.
刘晓娟  孙学刚  田青 《生态学报》2016,36(10):2905-2913
在甘肃盐池湾国家级自然保护区内海拔4137 m处,选择典型的囊种草垫状植被设置研究样地,研究了垫状植物囊种草对群落物种组成和群落物种多样性的影响,并且定量的研究了囊种草对群落物种丰富度的影响能力和维持潜力。研究结果表明:囊种草为群落中增加了新的植物种类,并且提高了部分生境一般种的多度;囊种草的出现提高了群落物种密度和物种丰富度,进而提高了群落物种多样性;囊种草斑块的增加将会引起景观水平物种丰富度的增加,表明囊种草具有为群落中引入新的植物种类进而提高群落物种丰富度的能力;在景观水平,囊种草所创造的生境多样性则成为一种保障,可以维持景观中物种丰富度从而降低物种损失的风险,表明囊种草具有较高的群落物种丰富度维持潜力。  相似文献   

18.
Abstract. It has been proposed that in the harsh arctic and alpine climate zones, small microtopographic variations that can generate more benign conditions than in the surrounding environment could be perceived as safe sites for seedling recruitment. Cushion plants can modify wind pattern, temperature and water availability. Such modifications imply that cushion plants could act as ‘nurse plants’ facilitating the recruitment of other species in the community. This effect should be more evident under stressful conditions. We tested these hypotheses comparing the number of species that grow inside and outside Bolax gummifera cushions at two elevations (700 and 900 m a.s.l.) in the Patagonian Andes of Chile (50°S). At both elevations, and in equivalent areas, the number of species was registered within and outside cushions. A total of 36 and 27 plant species were recorded either within or outside B. gummifera cushions at 700 and 900 m a.s.l., respectively. At 700 m a.s.l., 33 species were recorded growing within cushions and 29 outside them, while at 900 m a.s.l. these numbers were 24 and 13 respectively. At both elevations there were significantly more species growing within than outside cushions, and the proportion of species growing within cushions increased with elevation. Thus there is a nurse effect of cushion plants and it is more evident at higher elevations. Shelter from wind and increased soil water availability seem to be the factors that increase plant recruitment within cushions.  相似文献   

19.
20.
In alpine habitats, positive interactions among plants tend to increase with elevation as a result of altitudinal increase in environmental harshness. However, in mountains located in arid zones, lower elevations are also stressful because of scarce availability of water, suggesting that positive interactions may not necessarily increase with elevation. Here we analysed the spatial association of plant species with the nurse cushion plant Laretia acaulis at two contrasting elevations, and monitored the survival of seedlings of two species experimentally planted within and outside cushions in the semiarid Andes of central Chile. Positive spatial associations with cushions were more frequent at lower elevations. Species growing at the two elevations changed the nature of their association with cushions from neutral or negative at higher elevations to positive at lower elevations. Survival of seedlings was higher within cushions, particularly at lower elevations. The increased facilitation by cushions at lower elevations seems to be related to provision of moisture. This result suggests that cushion plants play a critical role in structuring alpine plant communities at lower elevations, and that climatic changes in rainfall could be very relevant for persistence of plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号