首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of the invasive seaweed Sargassum muticum (Yendo) Fensholt on a low intertidal macroalgal assemblage was assessed at a semiexposed rocky shore in northern Spain between 2002 and 2004. Sargassum muticum plants were removed from the mature macroalgal assemblage and from those occurring along the successional process of the assemblage. Biomass, richness, diversity, and percentage cover of macroalgae in experimental plots were compared with unmanipulated controls. The effect of S. muticum removal on the macroalgal assemblage more than 2 years after the beginning of the experiment was negligible. Moreover, no differences between treatments were detected in the general patterns of succession. Only significant differences in S. muticum abundance were detected between treatments at the end of the experiment. We suggest that the low abundance of S. muticum at this intertidal level and its pseudoperennial life cycle may limit competition with native macroalgae. However, long‐term removal experiments may be a more indicator of the impact of S. muticum at the upper limit of its vertical distribution.  相似文献   

2.
Sargassum muticum (Yendo) Fensholt is an introduced brown seaweed with a very distinctive seasonal growth cycle on European shores. The present study links the dynamics of a population of S. muticum with the seasonal growth cycle of the species and the density-dependent processes operating throughout this cycle. Results indicate that both growth cycle and intraspecific competition influenced the structure and population dynamics. Size inequality increased during the slow growth phase (autumn–winter) of the 2-year study. Mechanisms generating inequality of size could be the existence of asymmetric competition and the inherent differences in growth rates between old (regenerated) and new thalli (recruits). Inequality of size distributions decreased progressively during the last months of the growth phase (spring–summer) and could be related to a process of self-thinning. There was a negative biomass–density relationship (as a measure of biomass accumulation-driven mortality) that confirms the importance of self-thinning as a major demographic factor in the S. muticum population.  相似文献   

3.
Combined gas chromatography-mass spectrometry (GCMS) was used to identify and quantify specific cytokinins from Porphyra perforate J. Ag. and Sargassum muticum (Yendo) Fensh. The level of isopentenyladenosine was estimated to be 0.6 μ·kg?1 fresh weight in Porphyra and 0.9 μ·kg?1 fresh weight in Sargassum. The level of cis-zeatin riboside was estimated to be 0.2 μ·kg?1 fresh weight in Sargassum. This is the first definitive identification of a cytokinin from a red alga, and the second report from a brown alga.  相似文献   

4.
Sargassum muticum (Yendo) Fensholt is an invasive species that is firmly established on intertidal and subtidal rocky shores of Europe and the Pacific coast of North America. Local success and spread of S. muticum is thought to rely on its reproductive potential that seems dependent on exogenous factors like tidal and lunar cycles. This study is the first to compare the reproductive patterns (periodicity of egg expulsion and embryo settlement) of this invader in two different habitats: the middle and low intertidal. The combination of monthly, daily, and tidal samples at triplicate sites within each habitat showed a semilunar periodicity of egg expulsion and embryo settlement coincident with increasing tidal amplitude just before full and new moons. In both habitats, duration of each egg expulsion event was ~1 week, and embryo settlement occurred during the first daily low tide and with the incoming high tide during spring tides. However, both expulsion and settlement started 1–2 d earlier, expulsion saturation was faster, and settlement was higher in the mid‐ compared to the low intertidal. Our results suggest that the exact timing of gamete expulsion and embryo release of S. muticum responds to local factors, including tidal cues, which result in differences between mid‐ and low‐intertidal habitats.  相似文献   

5.
We examined long‐term changes in the macroalgal vegetation at Stora Bornö Island in the inner Gullmar Fjord on the Swedish Skagerrak coast. This was made possible by access to a 1941 diving investigation. The same sites were reinvestigated in 1998. Community composition and depth distributions of species were compared and changes were analyzed with focus on functional groups (size, thallus shape, and life‐history traits). We discovered a significant decrease in the depth extension of macroalgal species and a dramatic decline of species richness in the lower littoral (below 16 m of depth) compared with 57 years earlier. Ordination analysis revealed that there was a significant difference in the community composition between the two study periods. In general, small (<10 cm), thin, filamentous, and aseasonal ephemerals increased in relative abundance, whereas larger (>10 cm), coarsely branched, and perennial algae decreased. Calibrations of individual species to local sediment cover, using canonical correspondence analysis, indicated that part of the change in species composition was related to sediment load. Furthermore, large‐scale climate differences (NAO Winter Index) between the study periods indicated a higher impact of Baltic Sea and Kattegat water in the nutrient dynamics of the fjord in the 1998 study. We concluded that the observed long‐term changes in the macroalgal community at Stora Bornö Island were consistent with an increased nutrient availability.  相似文献   

6.
Sargassum muticum (Yendo) Fensholt is one of the most well‐known invasive species in the world. There have, however, been few genetic investigations on both its introduced and native populations. There are also some questions about the taxonomic status of this species. This study is the first to assess the genetic diversity of S. muticum on a global scale, by utilizing one marker each from the extranuclear genomes, namely, plastidial RUBISCO and mitochondrial TrnW_I spacers, as well as the nuclear internal transcribed spacer 2 (ITS2). Based on the markers investigated, both the invasive as well as the native populations of this species appeared very homogenous, when compared with other invasive and brown macroalgae. No variation in ITS2 and RUBISCO spacer was revealed in S. muticum populations, including those from its native ranges in Asia and the introduced ranges in Europe and North America. Two TrnW_I spacer haplotypes with a fixed two‐nucleotide difference were found between the populations of eastern Japan and the other 15 populations examined. This study confirms that there is no cryptic diversity in the introduced range of this species. All the materials collected globally are indeed S. muticum. Results depicting the distribution range of the two TrnW_I spacer haplotypes also support the earlier suggestion that the source of the introduced S. muticum populations is most likely western and central Japan (Seto Inland Sea), where the germlings of S. muticum were likely to have been transported with the Pacific oysters previously introduced for farming in Canada, UK, and France in earlier years.  相似文献   

7.
The life cycle of the large dioecious alga Sargassum horneri (Turner) C. Agardh was completed in unialgal culture by controlling photoperiod in relation to the phase of growth. Embryos isolated from a naturally grown female thallus gave rise to early germlings that rapidly formed blades under both short-day (9 h L) and long-day (15 h L) conditions at 20° C Shoot elongation, which followed early blade formation, occurred under the short-day conditions hut not under the long-day conditions. Functional female and male receptacles developed when thalli 8–14 cm long grown under the short-day conditions were transferred to the long-day conditions; gamete fusion occurred when male and female thalli were grown together. Fertilized oospores gave rise to normal thalli in a manner similar to that for in situ plants. Thus, the life cycle of S. horneri was completed in laboratory culture.  相似文献   

8.
Seasonal variation in density, thallus length and biomass, population size structure, and allometric length‐biomass relationships was investigated in populations of Sargassum ilicifolium (Turner) C. Agardh, Sargassum subrepandum (Forssk.) C. Agardh, and Turbinaria triquetra (J. Agardh) Kütz. (Phaeophyceae) on shallow reef flats in the southern Red Sea. Thallus length and biomass varied strongly with season, with the highest values occurring in the cooler months. Thallus densities showed no significant temporal variation. Log‐total biomass versus log‐density relationships were positive throughout the growth season without any decrease in the slope of the relationship. In two populations, biomass‐density combinations approached the interspecific biomass‐density line, but the massive annual shedding of modules occurred before self‐thinning would set in. Allometric length‐biomass relationships varied with season in all populations and were associated with seasonal module initiation, growth, and shedding. Evidence of a strong asymmetric competition was found in two high‐density populations. These populations showed a predominance of small thalli during peak development, asymmetrical Lorenz curves, increasing Gini coefficients, and increasing thallus length relative to biomass during the main growth phase. In two other less crowded populations, small thalli were absent during peak development, Lorenz curves were symmetrical, and Gini coefficients decreased during the main growth phase. In these populations, size equalization appears to be due to responses at the modular level rather than size‐dependent mortality. We conclude that changes in size structure in this highly seasonal environment are determined by module dynamics, modified by asymmetric competition in some populations, with a minor role of recruitment and no regulatory effect of self‐thinning.  相似文献   

9.
Module dynamics of the fucoid alga SARGASSUM SUBREPANDUM (Forssk.) C. Agardh was studied in the southern Red Sea. Seasonal variation in thallus density and size was determined, and the initiation, growth, reproduction, and shedding of modules (primary laterals) were ascertained, using a tagging approach. Possible effects of different size‐related parameters on module initiation, growth, reproduction, and shedding were analyzed in the context of contradicting results for other macroalgae, in comparison with terrestrial plants. Thallus density varied little; most of the seasonal variation occurred at the modular level. A restricted period of new module formation early in the cooler season was followed by fast growth and reproduction. Massive shedding of modules occurred toward the end of the cooler season leading to strongly reduced biomass in summer. There was some evidence that high module numbers inhibited new module formation and enhanced the maximum module elongation rate (fastest‐growing module per thallus). On the other hand, elongation rates generally decreased, and apical tissue losses increased with increasing module length. This response was observed over a wide size range, suggesting grazing losses. There was no evidence of suppressed growth in small modules due to intraspecific competition. Elongation rates remained unaffected by reproductive status, indicating that there was no direct trade‐off between growth and reproduction. Module survivorship was independent of module number and size, but fertile modules were more persistent than vegetative ones. We conclude that module dynamics are determined by seasonal changes in the environment, size‐dependent processes, and interactions among the modules.  相似文献   

10.
11.
The abundance of calcareous green algae was recorded quarterly at 28 sites within the Florida Keys National Marine Sanctuary (FKNMS) for a period of 7 years as part of a sea grass monitoring program. To evaluate the validity of using the functional‐form group approach, we designed a sampling method that included the functional‐form group and the component genera. This strategy enabled us to analyze the spatiotemporal patterns in the abundance of calcareous green algae as a group and to describe synchronous behavior among its genera through the application of a nonlinear regression model to both categories of data. Spatial analyses revealed that, in general, all genera displayed long‐term trends of increasing abundance at most sites; however, at some sites the long‐term trends for genera opposed one another. Strong synchrony in the timing of seasonal changes was found among all genera, possibly reflecting similar reproductive and seasonal growth pattern, but the variability in the magnitude of seasonal changes was very high among genera and sites. No spatial patterns were found in long‐term or seasonal changes; the only significant relation detected was for slope, with sites closer to land showing higher values, suggesting that some factors associated with land proximity are affecting this increase. We conclude that the abundances of genera behaved differently from the functional‐form group, indicating that the use of the functional‐form group approach may be unsuitable to detect changes in sea grass community structure in the FKNMS at the existing temporal and spatial scale of the monitoring program.  相似文献   

12.
Temperature is expected to modify the effects of ultraviolet radiation (UVR) on photosynthesis by affecting the rate of repair. We studied the effect of short‐term (1 h) and long‐term (days) acclimation to temperature on UVR photoinhibition in the diatom Thalassiosira pseudonana Hasle et Heimdal. Photosynthesis was measured during 1 h exposures to varying irradiances of PAR and UVR + PAR at 15, 20, and 25°C, the latter corresponding to the upper temperature limit for optimal growth in T. pseudonana. The exposures allowed the estimation of photosynthesis–irradiance (P–E) curves and biological weighting functions (BWFs) for photoinhibition. For the growth conditions used, temperature did not affect photosynthesis under PAR. However, photoinhibition by UVR was highly affected by temperature. For cultures preacclimated to 20°C, the extent of UVR photoinhibition increased with decreasing temperature, from 63% inhibition of PAR‐only photosynthesis at 25°C to 71% at 20°C and 85% at 15°C. These effects were slightly modified after several days of acclimation: UVR photoinhibition increased from 63% to 75% at 25°C and decreased from 85% to 80% at 15°C. Time courses of photochemical efficiency (ΦPSII) under UVR + PAR were also fitted to a model of UVR photoinhibition, allowing the estimation of the rates of damage (k) and repair (r). The r/k values obtained for each temperature treatment verified the responses observed with the BWF (R2 = 0.94). The results demonstrated the relevance of temperature in determining primary productivity under UVR exposures. However, the results suggested that temperature and UVR interact mainly over short (hours) rather than long (days) timescales.  相似文献   

13.
Fronds of clonal seaweeds with extensive holdfasts relative to frond size are known not to self‐thin during growth, even in crowded stands. We tested whether frond self‐thinning would occur for such a seaweed since these traits are more similar to those of unitary seaweeds, which do self‐thin in crowded conditions. We used Sargassum lapazeanum Setch. et N. L. Gardner (Fucales, Phaeophyceae) from the Pacific coast of Mexico, for which we first confirmed its clonal nature by performing a regeneration experiment in culture tanks. During the growth season (winter to late spring), S. lapazeanum stand biomass increased, while frond density and size inequality (Gini coefficient for frond biomass) decreased. These results indicate that self‐thinning occurred at the frond level. We propose a conceptual model for frond dynamics for clonal seaweeds in general. In stands of clonal species with small fronds and relatively extensive holdfasts (particularly when holdfasts are perennial), frond dynamics would be determined mostly by intraclonal regulation, which seems to prevent excessive crowding from occurring. Such species display a positive biomass–density relationship during the growth season. On the contrary, in stands of clonal species with large fronds relative to holdfast size, frond dynamics would be determined mostly by interactions among genets. For such species, self‐thinning may be detected at the frond level in crowded stands, resulting in a negative biomass–density relationship during growth.  相似文献   

14.
Across heterogeneous landscapes, populations may have adaptive differences in gene regulation that adjust their physiologies to match local environments. Such differences could have origins in acclimation or in genetically fixed variation between habitats. Here we use common‐garden experiments to evaluate differences in gene expression between populations of the purple sea urchin, Strongylocentrotus purpuratus, spanning 1700 km and average temperature differences of 5°C to 8°C. Across expression profiles from 18,883 genes after 3 years of common conditions, we find highly correlated expression patterns (Pearson's r = 0.992) among most genes. However, 66 genes were differentially expressed, including many ribosomal protein and biomineralization genes, which had higher expression in urchins originally from the southern population. Gene function analyses revealed slight but pervasive expression differences in genes related to ribosomal function, metabolism, transport, “bone” development, and response to stimuli. In accord with gene expression patterns, a post‐hoc spine regrowth experiment revealed that urchins of southern origin regrew spines at a faster rate than northern urchins. These results suggest that there may be genetically controlled, potentially adaptive differences in gene regulation across habitats and that gene expression differences may be under strong enough selection to overcome high, dispersal–mediated gene flow in this marine species.  相似文献   

15.
Small (3–7 cm long) Fucus distichus ssp. edentatus (de la Pyl.) Pow. Plants were tagged at three sites in which densities of the herbivorous snails Littorina sitkana and L. scutulata ranged from 367–4690 animals · M-2. From April–August 1986, the growth rate, degree of wounding, and reproductive status of individual thalli were monitored at 2–4 week intervals. Grazer-inflicted damage to the thalli varied within and among sites. Mean growth rates at the site with low densities of littorines were about twice those at the site with intermediate densities and about four times those at the high density site. At the site with high densities of littorines, F. distichus growth rates were negatively correlated with the degree to which the plants were wounded. There appeared to be no correlation of grazer density with F. distichus survivorship. Thalli at the site with few herbivores tended to reproduce earlier and at a larger size than did those at the other two sites. In all three areas, only thalli that had received little damage from herbivores became reproductive. By lowering growth rates and delaying reproduction in F. distichus, grazing by littorine snails can potentially cause variation in reproductive output among individual thalli.  相似文献   

16.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

17.
The effect of shading by an adult canopy on blade-stage Macrocystis pyrifera (L.) C. A. Agardh was estimated by comparing the average growth rate of individuals under a canopy to that of individuals in a canopy gap. This comparison was made in 1983 during a strong El Niño and again in 1986 after the El Niño. Estimated nutrient concentrations in 1983 were two orders of magnitude below those in 1986, whereas ambient light levels were over 3 times higher. The kelp canopy caused similar proportional light reductions (20–30%) during both years. Blades grew 18% slower under the canopy than in the clearing in 1983 and about 77% slower under the canopy in 1986. Blade-stage individuals grew at the same rates in clearings in 1983 and 1986. Regardless of shading, the average growth rate of blade-stage kelp under the ambient, low-nutrient conditions of 1983 was higher than that later observed for multifronded juveniles during the same El Niño. The growth of blade-stage kelp was more like that of larger juveniles growing under high-nutrient conditions. The difference may be due to greater concentrations of nutrients very near the sea floor where single blades are growing compared to concentrations higher in the water column where larger kelp have most of their tissues.  相似文献   

18.
Many brown algae, including the kelp Laminaria digitata (Huds.) Lamour., exhibit enhanced photosynthesis when they are given a small amount of blue‐light in addition to a background of saturating red light. This blue light effect is correlated with an increased uptake of carbon. In the present study, we tested the hypothesis that blue light acts by increasing the activity of a plasma membrane H + ‐ATPase, thereby promoting an active carbon uptake across the plasma membrane. Photosynthetic carbon uptake was studied in pH‐drift experiments under illumination with red and blue light and using different inhibitors. Vanadate, an inhibitor of plasma membrane H + ‐ATPases, had a minor inhibitory effect on carbon uptake rates under saturating red light conditions, but inhibited the blue‐light enhancement by approximately 60%. An inhibitor of external carbonic anhydrase, acetazolamide, decreased the carbon uptake in both red light and in red plus blue light by 48% and 68%, respectively. These results suggest that photosynthetic carbon uptake depends on an external carbonic anhydrase under both red and red plus blue light conditions, and that blue light induces an increased activity of a P‐type H + ‐ATPase in the plasma membrane. The proton buffer Tris, which has a buffering capacity similar to vanadate in seawater, had no inhibitory effect on carbon uptake rates neither in red light nor in red plus blue light, showing that the inhibitory effect of vanadate is not caused by its effect as a buffer. The blue‐light enhancement was also abolished by a protein kinase inhibitor (H‐7), suggesting that the transduction of the blue‐light signal involves a protein kinase, which activates the plasma membrane H + ‐ATPase by phosphorylation.  相似文献   

19.
Involvement of indole‐3‐acetic acid (IAA), produced by the microalgae‐growth‐promoting bacteria Azospirillum brasilens and A. lipoferum, in promoting growth of the microalga Chlorella vulgaris Beij. was studied. Four wildtype strains of Azospirillum and their IAA‐deficient mutants were co‐immobilized with C. vulgaris in alginate beads. Cultures were grown in synthetic growth medium supplemented with tryptophan. Growth promotion of microalgae and production of exogenous IAA by Azospirillum spp. were monitored. All wildtype Azospirillum spp. produced significant but varying amounts of IAA, while their mutant forms produced significantly less. The results demonstrated a significant growth promotion in Chlorella cultures when immobilized with the four wildtype strains of Azospirillum, while very low or no enhanced growth was induced by the four IAA‐deficient mutants, compared to when C. vulgaris is immobilized alone. A complementation experiment, where an IAA‐attenuated mutant (A. brasilense SpM7918) was supplemented with IAA produced by its parental wildtype strain (A. brasilense Sp6), restored growth promotion in the microalgae‐mutant culture.  相似文献   

20.
In batch cultures of four Mediterranean strains (from France, Italy, and Spain) of Alexandrium catenella (Whedon et Kof.) Balech growing on a daily light cycle, ammonium and urea uptake were estimated by the 15N tracer technique. Ammonium uptake could be described by Michaelis–Menten kinetics along a substrate gradient of 0.1–10 μgat N · L?1 for the four strains, while two different patterns were observed for urea uptake with Michaelis–Menten kinetics for one strain and linear kinetics for the others. In all cases, an increase in uptake rates with time was noted over the daylight period. This trend led to a net increase in the maximum uptake rate (Vmax; for saturable kinetics) and in the initial slope α. For ammonium, Vmax increased by a factor of 2–10 depending on the strain, and, for urea, the maximal uptake rates measured increased by a factor of 2–18. Temporal variations of half‐saturation constants (Ks) for both nutrients did not show a clear trend. Increases in Vmax and α showed an acclimation of the cells’ uptake system over time to a N pulse, which may be explained by the light periodicity. For two strains, extensive ammonium release was observed during urea assimilation. This mechanism removes urea from the medium, so it is no longer available to other potential competitors, but supplies N back to the medium in the form of ammonium. From a methodological point of view, the phenomenon leads to considerable underestimates of the contribution of urea to phytoplankton growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号