首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium forms neutral, lipophilic CdL20 complexes with diethyldithiocarbamate (L = DDC) and with ethylxanthate (L = XANT). In a synthetic solution and in the absence of natural dissolved organic matter (DOM), for a given total Cd concentration, uptake of these complexes by unicellular algae is much faster than the uptake of the free Cd2+ cation. The objective of the present study was to determine how this enhanced uptake of the lipophilic CdL20 complexes was affected by the presence of natural DOM (Suwannee River humic acid, SRHA). Experiments were performed with Cd(DDC)20 and Cd(XANT)20 at two pH values (7.0 and 5.5) and with the three chlorophytes [Chlamydomonas reinhardtii P. A. Dang., Pseudokirchneriella subcapitata (Korshikov) Hindák, Chlorella fusca var. vacuolata Shihira et R. W. Krauss]. Short‐term uptake (30–40 min) of the CdL20 complexes was followed in the absence and presence of SRHA (6.5 mg C · L?1). Acidification from pH 7.0 to 5.5 decreased CdL20 uptake by the three algae, in the presence or absence of humic acid (HA). The dominant effect of the HA was to decrease Cd uptake, due to its interaction with the CdL20 complexes in solution. However, if uptake of the free CdL20 complexes was compared in the presence and absence of HA, in four of eight cases initial uptake rate constants (ki) were significantly higher (P < 0.05) in the presence of the HA, suggesting the operation of an interfacial effect of the HA at the algal cell membrane, favoring uptake of CdL20. Overall, the experimental results suggest that neutral metal complexes will be less bioavailable in natural waters than they are in synthetic laboratory media in the absence of natural DOM.  相似文献   

2.
ADSORPTION OF FULVIC ACID ON ALGAL SURFACES AND ITS EFFECT ON CARBON UPTAKE   总被引:1,自引:0,他引:1  
Adsorption of Suwannee River fulvic acid (SRFA) to algal surfaces of three green algae was studied at environmentally relevant pH values (4 –7) and SRFA concentrations (5–100 mg·L 1). The influence of adsorbed SRFA on carbon uptake of Scenedesmus subspicatus Chodat was also examined. Although no adsorption was observed at neutral pH values (pH 6 and 7), at pH 4 up to 31 mg SRFA·m 2 and at pH 5 up to 4 mg SRFA·m 2 was adsorbed to the algal surfaces. Electrophoretic mobility measurements of S. subspicatus demonstrated an increase in the negative surface charge of the alga in the presence of SRFA at pH 4. The adsorbed SRFA also influenced 14C uptake in S. subspicatus; in this case, enhanced carbon uptake could be related to the amount of adsorbed SRFA. The binding of humic substances by algal surfaces was interpreted as the result of hydrogen bonding and hydrophobic interactions.  相似文献   

3.
Uptake of lipophilic metal complexes by freshwater algae has recently been shown to be pH dependent. Here we look at different physiological aspects that could influence the diffusion of the lipophilic Cd complex, Cd(diethyldithiocarbamate)20 (Cd(DDC)20), into algal cells at different exposure pH values. Changes in cell membrane permeability were assessed as a function of pH for three species of green algae [Chlamydomonas reinhardtii P. A. Dang., Pseudokirchneriella subcapitata (Korshikov) Hindák, and Chlorella fusca var. vacuolata Shihira et R. W. Kraus] using two neutral, nonionic probes, fluorescein diacetate (FDA) and D‐sorbitol. In parallel experiments, we exposed algae to inorganic Cd or to Cd(DDC)20 and monitored Cd intracellular metal distribution, together with phytochelatin synthesis. For the three algal species acclimated at pH 5.5 (w/wo DDC 1 μM) and exposed at this pH, their permeability to FDA and D‐sorbitol was consistently lower than for algae growing at pH 7.0 and exposed at this pH (P < 0.001). The ratio of the FDA hydrolysis rate measured at pH 7.0 with respect to the rate measured at pH 5.5 (both in the presence of DDC) correlated with the ratio of the Cd(DDC)20 initial internalization rate constant obtained at pH 7.0 versus that obtained at pH 5.5 (three algae species, n = 9, r = 0.85, P = 0.004). Our results strongly suggest that acidification affects metal availability to algae not only by proton inhibition of facilitated metal uptake but also by affecting membrane permeability.  相似文献   

4.
In the St. Lawrence Estuary, annual recurrent blooms of the toxic dinoflagellate Alexandrium tamarense L. Balech are associated with brackish waters. Riverine inputs are suspected to favor bloom development by increasing water column stability and/or by providing growth stimulants such as humic substances (HS). A 17‐day culture experiment was conducted to evaluate the importance of HS as growth factors for A. tamarense. Nonaxenic cultures were exposed to four HS extracts from three different sources: humic and fulvic acids isolated from the Manicouagan River, Quebec, Canada; humic acids from the Suwannee River, Georgia, United States; and a desalted alkaline soil extract. For each extract, four concentrations were tested as supplements to the artificial Keller medium, a nitrate‐rich algal culture medium. Additions of HS from all sources significantly enhanced the overall growth rates relative to the controls. Concentrations of HS, estimated by UV spectrophotometry, remained constant throughout the exponential growth phase, suggesting that the HS were acting mainly as growth promoters during our experiment. Dose–response curves indicated that HS could increase the growth rate of A. tamarense even at low concentrations, such as those encountered in the St. Lawrence Estuary. Our results support the hypothesis that HS from the Manicouagan River plume can stimulate the development of toxic dinoflagellate blooms.  相似文献   

5.
Evangelou  V. P.  Marsi  M. 《Plant and Soil》2001,229(1):13-24
Decomposition of fresh plant residues produces humic fractions with different molecular size and composition. It was hypothesized that the functional group-type and content of humic fractions depended on molecular size, which was expected to influence heavy-metal complexation behavior. In this study, corn (Zea maysL.) stalks and leaves were collected from the field and decomposed for an 8-month period to produce humic substances which were separated into three water soluble fractions, HF1, HF2 and HF3, from highest to lowest relative molecular size. Functional group determination showed that total, carboxylic and phenolic OH acidity increased as relative molecular size of humic fractions decreased. Furthermore, C/O ratios decreased, whereas N/C and H/C ratios remained relatively unaffected as relative molecular size of humic fractions decreased. Formation of Ca2+, Cd2+ and Cu2+ -humic fraction complexes and how these complexes were affected by pH and relative (humic fraction) molecular size were studied using potentiometric titration. Metal-humic complexes exhibited at least two types of sites with respect to Ca2+, Cd2+ and Cu2+ complexation. Relative molecular size had a large significant influence on total metal-ion complexation, but it had a relatively small influence on complex stability at low levels of metal-ion complexation. Strength of metal-ion humic complexes followed the order Cu2+ > Cd2+ > Ca2+ and was affected by pH, especially for low affinity sites. Carboxylic and phenolic OH groups were most likely involved in complex formation. Magnitude of the metal-humic formation constants at the lowest equilibrium metal-ion concentration, under the various pH values tested, varied from 5.39 to 5.90 for Ca2+, from 5.36 to 6.01 for Cd2+ and from 6.93 to 7.71 for Cu2+. Furthermore, the formation constants appeared to be positively influenced by decreasing molecular size of water-soluble humic fraction, and increasing pH. These results inferred that soil management practices causing build-up of humic substances would affect mobility and bioavailability of metal-ions.  相似文献   

6.
Cadmium and copper inhibition of nutrient uptake by the green alga Scenedesmus quadricauda is highly pH dependent in an inorganic medium; both metals are less toxic at low pH. The alga was grown in chemostats with both N and P approaching limiting levels; it was then possible to study metal toxicity to the nitrate, ammonium, and phosphate uptake systems of algae in an identical physiological state. When the logarithm of the Cd concentration causing 25% inhibition of nitrate, ammonium, and phosphate uptake was regressed against pH almost perfect linear relationships were obtained. This was also true at the 50% inhibition level, except for a smaller than predicted increase in Cd toxicity to ammonium uptake at pH 8, which may be due to the beginning of Cd precipitation at this pH. Cu2+ toxicity was linearly related to pH for ammonium and phosphate uptake and although, its toxicity for nitrate uptake also increased with pH, the increase was not perfectly linear. The toxicity of total Cu showed no linear relationship to pH. Cd2+ and Cu2+ toxicity increased by up to four orders of magnitude from pH 5 to 8. Competition between free metal and hydrogen ions for uptake sites on the cell surface is suggested as a mechanism increasing the toxicity of free metal, ions as the hydrogen ion content decreases (i.e. at higher pH).  相似文献   

7.
This study investigated cadmium (Cd) uptake in Elodea canadensis shoots under different photosynthetic conditions, and its effects on internal (cytosolic) and external pH. The plants were grown under photosynthetic (light) or non‐photosynthetic (dark or in the presence of a photosynthetic inhibitor) conditions in the presence or absence of CdCl2 (0.5 μm ) in a medium with a starting pH of 5.0. The pH‐sensitive dye BCECF‐AM was used to monitor cytosolic pH changes in the leaves. Cadmium uptake in protoplasts and leaves was detected with a Cd‐specific fluorescent dye, Leadmium Green AM, and with atomic absorption spectrophotometry. During cultivation for 3 days without Cd, shoots of E. canadensis increased the pH of the surrounding water, irrespective of the photosynthetic conditions. This medium alkalisation was higher in the presence of CdCl2. Moreover, the presence of Cd also increased the cation exchange capacity of the shoots. The total Cd uptake by E. canadensis shoots was independent of photosynthetic conditions. Protoplasts from plants exposed to 0.5 μm CdCl2 for 3 days did not exhibit significant change in cytosolic [Cd2+] or pH. However, exposure to CdCl2 for 7 days resulted in increased cytosolic [Cd2+] as well as pH. The results suggest that E. canadensis subjected to a low CdCl2 concentration initially sequesters Cd into the apoplasm, but under prolonged exposure, Cd is transported into the cytosol and subsequently alters cytosolic pH. In contrast, addition of 10–50 μm CdCl2 directly to protoplasts resulted in immediate uptake of Cd into the cytosol.  相似文献   

8.
This study uses fluorescence spectroscopy to better understand the role of environmental metal ions in the interaction of charged herbicides with biochemical degradation product Suwannee River fulvic acid (SRFA). The interactions between the widely-used herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) (DCPPA) with Al3+ and the comparative metal Er3+ were probed at pH 4.0. Fluorescence experiments on binary solutions at pH 4.0 clearly indicated that Al3+ and Er3+ strongly interact with both SRFA and DCPPA alone in solution as demonstrated by fluorescence quenching with DCPPA and enhancement with SRFA by Al3+ and fluorescence quenching of both SRFA and DCPPA fluorescence by Er3+. Titrating Al3+ or Er3+ to SRFA-DCPPA quenched SRFA fluorescence as compared to the SRFA-metal ion binary complexes. Formation constants were determined using the Ryan-Weber model for the titration data. The DCPPA fluorescence results strongly support the formation of DCPPA-Al3+ and DCPPA-Er3+ complexes at pH values above the pKa (3.0) of DCPPA. Excitation and emission data obtained on ternary solutions of SRFA-Al3+-DCPPA and SRFA-Er3+-DCPPA complexes at pH 4.0 suggest that at this pH where the predominant DCPPA species is negatively-charged, Al3+ and Er3+ metal ions may function to “bridge” negatively-charged fulvic acids to negatively-charged pesticides. Fluorescence data collected on UV-irradiated ternary complexes indicate that both metals can also bridge DCPPA interactions with SRFA under those conditions. The results of our studies suggest that creation of a herbicide-free boundary corridor is recommended near mines and runoff areas with metal ions in surface waters to control possible complexation among fulvic acids, DCPPA and metal ions that maintains these molecules in a bioavailable state to plants and animals.  相似文献   

9.
Leaf material was incubated in flasks containing streamwater in which the pH and the concentration of isolated fulvic acid were varied independently of one another. Decomposition of the leaf material was slower at pH 4 than at pH 5 or 7, but the concentration of fulvic acid had no effect when the pH was held constant. At pH 5, 20 mg Cl–1 humic acid also had no effect on decomposition. High concentrations of dissolved fulvic acids may contribute to the slow decomposition of plant litter characteristic of many wetlands through their contribution to hydrogen ion activity, but we could find no evidence for other properties of fulvic acid which inhibit leaf litter decomposition.  相似文献   

10.
An ‘alternating solution’ culture method was used to study the effects of chloride ions and humic acid (HA) on the uptake of cadmium by barley plants. The plants were transferred periodically between a nutrient solution and a test solution containing one of four levels of HA (0, 190, 569 or 1710 μg cm−3) and one of five levels of Cd (0, 0.5, 1.0, 2.5 or 5.0 μg cm−3) in either a 0.006M NaNO3 or 0.006M NaCl medium. Harvest and analysis of shoots and roots was after nineteen days. The distribution of Cd in the test solutions between Cd2+, CdCl+ and HA-Cd was determined in a separate experiment by dialysis equilibrium. In the nitrate test solutions Cd uptake was clearly controlled by Cd2+ concentration and was therefore reduced by HA complex formation. In the absence of HA, chloride suppressed Cd uptake indicating that Cd2+ was the preferred species. However complex formation with Cl enhanced uptake when HA was present because of an increase in the concentration of inorganic Cd species relative to the nitrate system. The ratio root-Cd/shoot-Cd remained at about 10 across a wide range of shoot-Cd concentrations, from about 3 μg g−1 (sub-toxic) up to 85 μg g−1 (80% yield reduction). The ability of the barley plants to accumulate ‘non-toxic’ Cd in their roots was thus very limited. Humic acid also had no effect on Cd translocation within the plant and the root/shoot weight ratio did not vary with any treatment. At shoot-Cd concentrations in excess of 50 μg g−1, K, Ca, Cu and Zn uptake was reduced, probably the result of root damage rather than a specific ion antagonism. The highest concentration of HA also lowered Fe and Zn uptake and there was a toxic effect with increasing HA concentration at Cd=0. However the lowest HA level, comparable with concentrations found in mineral soil solutions, only reduced yield (in the absence of Cd) by <5% while lowering Cd uptake across the range of Cd concentrations by 66%–25%.  相似文献   

11.
Effects of humic substances (humic acid or fulvic soil extract) or saprophytic microorganisms (Paecilomyces lilacinus and an unidentified actinomycete) on growth of mycelium and mycorrhiza formation by Glomus claroideum BEG23 were studied in a hydroponic system. Humic substances stimulated root colonization and production of extraradical mycelium by the mycorrhizal fungus. Both humic and fulvic acids tended to decrease populations of culturable bacteria and fungi in the cultivation system, indicating a moderately antibiotic activity. The addition of saprophytic microorganisms able to use humic substances to the cultivation system further stimulated the development of the mycorrhizal fungus. However, stimulation of G. claroideum was also observed when the saprophytic microorganisms were heat-killed, suggesting that their effect was not linked to a specific action on humic substances. The results indicate that humic substances may represent a stimulatory component of the soil environment with respect to arbuscular mycorrhizal fungi.  相似文献   

12.
The extent of contamination of soils by toxic heavy metals not only depends on the rate of loading of the metal but also on the nature of the adsorbing surfaces, the degree of alkalinity or acidity of the soil and the presence of aqueous complexant ligands. This work reports on the role of pH on the retention of Cd, Hg, Pb and Zn by two soils and on the influence of the chloride, Cl‐, ion on the chemical speciation and retention of the four metals. Batch adsorption experiments were conducted from pH 3 to 7 in the presence of either 0.1 M LiCl or LiClO4. The results of the study showed that high concentrations of Cl ions can greatly decrease the retention of Hg and have an increasingly lesser effect on Cd, Pb and Zn retention. The effect of the Clons was directly related to the metal‐Cl formation constants. The results of computer modeling of Cd and Hg retention by goethite and humic acid fractions indicated the relative importance of aqueous vs. surface complexation on metal retention. For organic surfaces, which do not form ternary surface complexes, the presence of aqueous complexant ligands should always decrease the adsorption of the metal. For mineral surfaces, which do form ternary surface complexes, there may be increased or decreased metal retention depending on the formation constant of the aqueous metal‐ligand species, the intrinsic complexation constants for the various binary and ternary complexes of the metal and the concentration of the complexant ligand. Thus for Hg, which forms very strong aqueous species with Cl ions, reduced adsorption on goethite was predicted in the presence of 0.1 M LiCl, while enhanced adsorption was predicted for Cd and Pb. The results suggest caution in the disposal of Cl‐containing wastes onto metal‐contaminated soils. The deleterious effects of Cl ion addition would be greatest for soils with relatively high organic matter contents and low contents of hydrous ferric oxides.  相似文献   

13.
The aim of this study was to assess how the solubility and the speciation of Cd in soil solution were affected over time by the soil temperature for three metal-contaminated soils. The changes of solution Cd concentration (either total or free ionic) and other physico-chemical parameters (e.g. pH, ionic strength, the concentrations of ${\text{NO}}_3^ - $ , ${\text{SO}}_4^{2 - } $ , Ca, Mg and dissolved organic carbon) were monitored over a 28-day culture of lettuce (Lactuca sativa L.) in soils incubated at 10°C, 20°C or 30°C. The major result of this study was that Cd2+ concentration greatly varied over time in soil solution. The Cd2+ concentration declined over time in soil solution as did the concentration of cations that may compete for adsorption (Ca2+, Mg2+). The rise in soil temperature primarily impacted on the concentration of Cd2+ via promoting the microbial C-degradation and, thus, the complexation of Cd in soil solution. The integration of the temporal variations in Cd2+ concentration through the calculation of the root exposure to solution Cd (E Cd) provided a fairly close and robust prediction of Cd concentration in lettuce roots. The present work thus provided new insights on the fate of Cd in contaminated soils that may be relevant for predicting the root uptake of Cd.  相似文献   

14.
Datta  A.  Sanyal  S.K.  Saha  S. 《Plant and Soil》2001,235(1):115-125
The natural and synthetic humic acids were characterised by potentiometric titrations, viscosity and surface tension measurements, as well as visible spectometry The results have been correlated with coiling-decoiling behaviour and aliphatic–aromatic balance of these acids. The stability constant of complexes formed by these humic acids with Cd2+ ions in aqueous phase was evaluated by the ion-exchange method. Results tend to suggest that humic phenolic –OH group was involved in the formation of Cd2+–humic complex, leading to it the given stability in a manner as for the analogous metal–oxine complexation. The hydrophobic moiety of the synthetic humic acid may also provide a cage-type conformation around Cd2+ ion, imparting to the Cd2+–humic complex the desired stability.  相似文献   

15.
Several algal species responsible for harmful algal blooms (HABs), such as Alexandrium fundyense, are mixotrophic under certain environmental conditions. The ability to switch between photosynthetic and heterotrophic modes of growth may play a role in the development of HABs in coastal regions. We examined the influence of humic dissolved organic matter (HDOM) derived from terrestrial (plant/soil) and microbial sources on the growth of A. fundyense. We found that a terrestrially derived HDOM, Suwannee River humic acid (SRHA), did enhance A. fundyense growth; however, a microbially derived HDOM, Pony Lake fulvic acid (PLFA) did not enhance growth. A. fundyense grows in association with bacteria in culture and we observed that bacterial cell densities were much lower in A. fundyense cultures than in bacteria‐only cultures, consistent with bacterial grazing by A. fundyense in culture. In bacteria‐only cultures with added algal exudates (EX), the addition of PLFA and SRHA resulted in a slight increase in bacterial cell density compared to cultures without HDOM added. Changes over time in the chemical quality of the HDOM in the A. fundyense cultures reflected contributions of microbially derived material with similar characteristics as the PLFA. Overall, these results suggest that the chemical differences between SRHA and PLFA are responsible for the greater effect of SRHA on A. fundyense growth, and that the differential effect is not a result of an effect on the growth of associated bacteria.  相似文献   

16.
17.
The effect of topography on the nature of humic substances, isolated as water soluble organic carbon (WSOC), fulvic acid (FA), and humic acid (HA) was evaluated by comparing relative proportion and chemical characteristics of these fractions in upland and bottomland Coastal Plain soils in South Carolina. The fractions were characterized by elemental analysis and13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The majority of humic substances occur as humic acids, with bottomland soils having higher HA/FA ratios when compared to upland soils. We found no significant differences between upland and bottomland humic substances with respect to yields of WSOC and fulvic acids, and in the C and N content of humic and fulvic acids. Carbon-13 CPMAS NMR spectroscopy revealed that the WSOC and fulvic acid fractions were composed largely of O-alkyl-C structures with bottomland soils having higher amounts of these groups. Humic acid C distribution was similar between upland and bottomland soils and was largely composed of aromatic groups. Our results demonstrate that topography influences the formation of humic acid and the structural and chemical properties of the various humic fractions.requests for offprints  相似文献   

18.
The potential of alginate-immobilized Anabaena doliolum and Chlorella vulgaris was assessed for removal of nutrients (NO inf3 sup- and NH inf4 sup+ ) and metals (Cr2O inf7 sup2- and Ni2+) at different biomass concentrations (0.05, 0.1, 0.25, 0.49 and 1.22 g dry wt l-1) and pH values (4 to 10). Though uptake of all these substances was higher in concentrated algal beads (0.25, 0.49 and 1.22 g dry wt l-1), their rate of uptake was significantly (P<0.001) lower than that of low (0.05 g dry wt l-1) cell density beads. For A. doliolum, there was no significant difference in uptake rates for beads having densities of 0.05 and 0.1 g dry wt l-1. Chlorella vulgaris, however, showed maximum efficiency at 0.1 g dry wt l-1. Uptake of both the nutrients and the metals was maximal at pH 7 followed by pH 8, 6, 9, 10, 5 and 4. Of the different substances (organic acids and divalent cations) used, humic acid was most efficient in decreasing metal uptake. Mg2+ was, however, more efficient than Ca2+ in decreasing Ni2+ uptake. Immobilized algae with a cell density of 0.1 g dry wt l-1 were the most efficient for nutrient and metal removal at pH 6 to 8.  相似文献   

19.
The role of reactive oxygen species (ROS) in copper (Cu) toxicity to two freshwater green algal species, Pseudokirchneriella subcapitata (Korshikov) Hindák and Chlorella vulgaris Beij., was assessed to gain a better mechanistic understanding of this toxicity. Cu‐induced formation of ROS was investigated in the two algal species and linked to short‐term effects on photosynthetic activity and to long‐term effects on cell growth. A light‐ and time‐dependent increase in ROS concentrations was observed upon exposure to environmentally relevant Cu concentrations of 50 and 250 nM and was comparable in both algal species. However, effects of 250 nM Cu on photosynthesis were different, leading to a 12% reduction in photosynthetic activity in P. subcapitata, but not in C. vulgaris. These results indicate that differences in species‐specific sensitivities measured as photosynthetic activity were not caused by differences in the cellular ROS content of the algae, but probably by different species‐specific ROS defense systems. To investigate the role of ROS in Cu‐mediated inhibition of photosynthesis, the ROS scavenger Ntert‐butyl‐α‐phenylnitrone (BPN) was used, resulting in a reduction of Cu‐induced ROS production up to control level and a complete restoration of photosynthetic activity of Cu‐exposed P. subcapitata. This finding implied that ROS play a primary role in Cu toxicity to algae. Furthermore, we observed a time‐dependent ROS release process across the plasma membrane. More than 90% of total ROS were determined to be extracellular in P. subcapitata, indicating an efficient method of cellular protection against oxidative stress.  相似文献   

20.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号