共查询到20条相似文献,搜索用时 15 毫秒
1.
Alana M. Rader Amy Cottrell Anna Kudla Tiffany Lum David Henderson Harshad Karandikar Susan G. Letcher 《Biotropica》2020,52(3):410-414
On 19 May 2018, a microburst caused 600 isolated forest gaps in a Costa Rican tropical forest. We surveyed fallen and standing trees within gaps to determine whether certain variables are associated with treefalls. Our results highlight considerations for future research to understand the impacts of microbursts in tropical forests. 相似文献
2.
Prolific fine root growth coupled with small accumulations of dead fine roots indicate rapid rates of fine root production,
mortality and decay in young tree plantations in lowland Costa Rica. However, published studies indicate that fine roots decay
relatively slowly in tropical forests. To resolve this discrepancy, we used the intact-core technique to quantify first-year
decay rates of fine roots in four single-species plantations of native tree species. We tested three hypotheses: first, that
fine roots from different tree species would decay at different rates; second, that species having rapid fine root growth
rates would also have rapid rates of fine root decay; and third, that differences in fine root decay among species could be
explained by fine root chemistry variables previously identified as influencing decay rates. Fine roots in Virola
koschnyi plantations decayed very slowly (k = 0.29 ± 0.15 year−1); those of Vochysia
guatemalensis decayed seven times faster (k = 2.00 ± 0.13 year−1). Decay rates of the remaining two species, Hieronyma alchorneoides and Pentaclethra macroloba, were 1.36 and 1.28 year−1, respectively. We found a positive, marginally significant correlation between fine root decay rates and the relative growth
rates of live fine roots (R = 0.93, n = 4, P = 0.072). There was a highly significant negative correlation between fine root decay and fine root lignin:N (R = 0.99, P = 0.01), which supports the use of lignin:N as a decay-controlling factor within terrestrial ecosystem models. The decay
rates that we observed in this single study location encompassed the entire range of fine root decay rates previously observed
in moist tropical forests, and thus suggest great potential for individual tree species to alter belowground organic matter
and nutrient dynamics within a biotically rich rainforest environment.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
3.
Lynn Bohs 《Biotropica》2000,32(1):80-89
Isolating mechanisms are important in maintaining the taxonomic integrity of closely related sympatric taxa. A previous study found strong post‐zygotic isolating barriers between two species, Witheringia asterotricha and W. meiantha, of the W. solanacea (Solanaceae) species complex in Costa Rica. This study examines the presence of pre‐zygotic barriers between the two species at La Selva Biological Station in Costa Rica. Both species offer pollen and nectar as floral rewards and are visited primarily by solitary or semi‐social bees, some of which sonicate (“buzz”) the anthers to discharge pollen. No evidence was found for phenological differences in flowering time between W. asterotricha and W meiantha, but pre‐zygotic factors, such as ethological isolation and possibly fine‐scale ecological or geographic barriers, may be responsible for restricting gene flow between the two species. 相似文献
4.
Donald C. Dearborn 《Biotropica》1998,30(2):306-313
I studied two aspects of interspecific territoriality in a Costa Rican nectarivorous bird, the rufous-tailed hummingbird (Amazilia tzacatl). First, I examined variation in the response of the territory holder to four species of intruding hummingbirds by quantifying the proportion of intruders chased from the territory. This measure of territory defense varied significantly among species of intruders and was negatively related to the intruding species’body mass, possibly due to potential costs associated with becoming involved in escalated contests with larger individuals. Second, I tested for an effect of resource manipulation on territory defense. I increased the resource value of the territory by injecting extant natural flowers with artificial sucrose solution. While the frequency of territorial intrusions did not change, the proportion of intruders chased by the territory holder increased. Apparently, nectar supplementation changed the territory holder's perception of resource value but had little impact on the intruders’perception. 相似文献
5.
Carlos E. Silva James R. Kellner David B. Clark Deborah A. Clark 《Global Change Biology》2013,19(11):3423-3434
Tropical rainforests have experienced episodes of severe heat and drought in recent decades, and climate models project a warmer and potentially drier tropical climate over this century. However, likely responses of tropical rainforests are poorly understood due to a lack of frequent long‐term measurements of forest structure and dynamics. We analyzed a 12‐year record (1999–2010) of 47 817 annual measurements of canopy height to characterize the response of an old‐growth Neotropical rainforest to the severe heat and drought associated with the 1997–1998 El Niño. Well‐drained soils on slopes and plateaus experienced a threefold increase in the fraction of the landscape in gaps (≤2 m) and a reduction in the fraction in high canopy (>15 m) causing distributions of canopy height to depart from equilibrium for a period of 2–3 years. In contrast, forests on low‐lying alluvial terraces remained in equilibrium and were nearly half as likely to experience upper canopy (>15 m) disturbance over the 12 years of observation. Variation in forest response across topographic positions suggests that tropical rainforests are more sensitive to moisture deficits than high temperature and that topography likely structures landscape‐level variation in the severity of drought impacts. 相似文献
6.
Plants frequently display fruit characteristics that support multiple seed‐dispersal syndromes. These ambiguous characteristics may reflect the fact that seed dispersal is usually a complex process involving multiple dispersers. This is the case for the Neotropical ginger Renealmia alpinia (Zingiberaceae). It was originally suggested that the aromatic fruits of R. alpinia located at the base of the plant are adapted for terrestrial mammal seed dispersal. However, the dark‐purple coloration of the fruits and bright orange aril surrounding the seeds suggest that birds may play a role in R. alpinia seed dispersal. At La Selva Biological Station, Costa Rica, we used camera traps to record vertebrate visits to infructescences of R. alpinia. Most visitors were toucans and aracaris (Ramphastidae). However fruits were also removed by terrestrial mammals (coatis and armadillos). In addition to vertebrate fruit removal, some of the fruits dehisce and the seeds that fall on the ground are dispersed by ants. Fruitfall traps showed that 77 percent of fruits are removed by vertebrates. However, 15 percent of fruits fall to the base of parent plants to be potentially dispersed by ants. Experiments using a laboratory ant colony showed that ants are effective seed dispersers of R. alpinia. Ant seed manipulation increased germination success and reduced time to germination. In conclusion, primary seed dispersal in the Neotropical ginger R. alpinia is mostly performed by birds, additionally ants are effective dispersers at short distances. Seed dispersal in R. alpinia is a complex process involving a diverse array of dispersal agents. 相似文献
7.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns. 相似文献
8.
Suzanne R. Yorke Stefan A. Schnitzer Joseph Mascaro Susan G. Letcher Walter P. Carson 《Biotropica》2013,45(3):317-324
Recent evidence suggests that liana abundance and biomass are increasing in Neotropical forests, representing a major structural change to tropical ecosystems. Explanations for these increases, however, remain largely untested. Over an 8‐yr period (1999–2007), we censused lianas in nine, 24 × 36 m permanent plots in old‐growth and selectively logged forest at La Selva Biological Station, Costa Rica to test whether: (1) liana abundance and basal area are increasing in this forest; (2) the increase is being driven by increased recruitment, decreased mortality, or both; and (3) long‐distance clonal colonization explains the increase in liana abundance and basal area. We defined long‐distance clonal colonization as lianas that entered and rooted in the plots as vegetative propagules of stems that originated from outside or above the plot, and were present in 2007, but not in 1999 or 2002. Our hypotheses were supported in the old‐growth forest: mean liana abundance and BA (≥1 cm diameter) increased 15 and 20 percent, respectively, and clonal colonization from outside of the plots contributed 19 and 60 percent (respectively) to these increases. Lianas colonized clonally by falling vertically from the forest canopy above or growing horizontally along the forest floor and re‐rooting—common forms of colonization for many liana species. In the selectively logged forest, liana abundance and BA did not change, and thus the pattern of increasing lianas may be restricted to old‐growth forests. In summary, our data support the hypothesis that lianas are increasing in old‐growth forests, and that long‐distance clonal colonization is a major contributor. 相似文献
9.
In an old‐growth tropical wet forest at La Selva, Costa Rica, we combined radiocarbon (14C) dating and tree‐ring analysis to estimate the ages of large trees of canopy and emergent species spanning a broad range of wood densities and growth rates. We collected samples from the trunks of 29 fallen, dead individuals. We found that all eight sampled species formed visible growth rings, which varied considerably in distinctiveness. For five of the six species for which we combined wood anatomical studies with 14C‐dates (ring ages), the analyses demonstrated that growth rings were of annual formation. The oldest tree we found by direct ring counting was a Hymenolobium mesoamericanum Lima (Papilionaceae) specimen, with an age of ca. 530 years at the time of death. All other sampled individuals, including very large trees of slow‐growing species, had died at ages between 200 and 300 years. These results show that, even in an everwet tropical rain forest, tree growth of many species can be rhythmic, with an annual periodicity. This study thus raises the possibility of extending tree‐ring analyses throughout the tropical forest types lacking a strong dry season or annual flooding. Our findings and similar measurements from other tropical forests indicate that the maximum ages of tropical emergent trees are unlikely to be much greater than 600 years, and that these trees often die earlier from various natural causes. 相似文献
10.
David B. Clark Carlomagno Soto Castro Luis Diego Alfaro Alvarado Jane M. Read 《Ecology letters》2004,7(1):52-59
Assessment of forest responses to climate change is severely hampered by the limited information on tree death on short temporal and broad spatial scales, particularly in tropical forests. We used 1‐m resolution panchromatic IKONOS and 0.7‐m resolution QuickBird satellite data, acquired in 2000 and 2002, respectively, to evaluate tree death rates at the La Selva Biological Station in old‐growth Tropical Wet Forest in Costa Rica, Central America. Using a calibration factor derived from ground inspection of tree deaths predicted from the images, we calculated a landscape‐scale annual exponential death rate of 2.8%. This corresponds closely to data for all canopy‐level trees in 18 forest inventory plots, each of 0.5 ha, for a mostly‐overlapping 2‐year period (2.8% per year). This study shows that high‐spatial‐resolution satellite data can now be used to measure old‐growth tropical rain forest tree death rates, suggesting many new avenues for tropical forest ecology and global change research. 相似文献
11.
LAURA CHAVARRIA PIZARRO HELEN F. MCCREERY SARAH P. LAWSON MAX E. WINSTON SEAN O’DONNELL 《Ecological Entomology》2012,37(5):435-438
1. Sodium is often a limiting nutrient for terrestrial animals, and may be especially sought by herbivores. Leafcutter ants are dominant herbivores in the Neotropics, and leafcutter foraging may be affected by nutritional demands of the colony and/or the demands of their symbiotic fungal mutualists. We hypothesized that leafcutter colonies are sodium limited, and that leafcutter ants will therefore forage specifically for sodium. 2. Previous studies demonstrated that leafcutter Atta cephalotes Linnaeus workers preferentially cut and remove paper baits treated with NaCl relative to water control baits. Atta cephalotes colonies in this study were presented with baits offering NaCl, Na2SO4, and KCl to test whether leafcutters forage specifically for sodium. Sucrose and water were used as positive and negative controls, respectively. 3. Atta foragers removed significantly more of the baits treated with NaCl and Na2SO4 than the KCl treatment, which did not differ from water. The NaCl and Na2SO4 treatments were collected at similar rates. We conclude A. cephalotes forage specifically for sodium rather than for anions (chloride) or solutes in general. This study supports the hypothesis that leafcutter ants are limited by, and preferentially forage for, sodium. 相似文献
12.
13.
Two individual, dicotyledoneous leaves (125 and 98 cm2 in size) and one composed palm leaf (c. 6800 cm2 in size), gathered at La Selva Biological Station, Costa Rica, and Jatun Satcha Biological Station, Amazonian Ecuador, were screened for small-scale foliicolous lichen diversity. On the dicotyledoneous leaf from Costa Rica, 49 lichens and one lichenicolous fungus were found, while a comparable leaf from Ecuador revealed 46 lichens and two lichenicolous fungi. The palm leaf yielded 81 lichens and one lichenicolous fungus. This is the highest alpha-diversity so far reported for foliicolous lichens on individual leaves and invites for comparison with tree diversity in tropical rain forests. Due to the high proportion of species represented by a single thallus, the taxonomic diversity of lichens on individual leaves (or trees in selected plots) cannot be self-supporting, but reflects a high degree of dispersion or entropy within the community of which the individual leaf (or selected plot) is part. Diversity is therefore fractal, showing similar patterns at different scales, each part of a given community reflecting the entire community. Thus, mechanisms that result in high small-scale diversity must be looked for at the community level. 相似文献
14.
Increased atmospheric [CO2] could theoretically lead to increased forest productivity (‘CO2 fertilization’). This mechanism was hypothesized as a possible explanation for biomass increases reported from tropical forests in the last 30+ years. We used unique long‐term records of annually measured stands (eighteen 0.5 ha plots, 10 years) and focal tree species (six species, 24 years) to assess the effects of rainfall, temperature, and atmospheric [CO2] on annual wood production in a neotropical rain forest. Our study area was a meso‐scale section (600 ha) of old‐growth Tropical Wet Forest in NE Costa Rica. Using the repeated remeasurements we directly assessed the relative effects of interannual climatic variation and increasing atmospheric [CO2] on wood production. A remarkably simple two‐factor model explained 91% of the interannual variance in stand‐level tree growth; the statistically independent factors were total dry season rainfall (positive effect, r2=0.85) and night‐time temperature (negative effect, r2=0.42). Stand‐level tree mortality increased significantly with night‐time temperature. After accounting for dry season rainfall and night‐time temperature, there was no effect of annual [CO2] on tree growth in either the stand or focal species data. Tree growth in this Tropical Wet Forest was surprisingly sensitive to the current range of dry season conditions and to variations in mean annual night‐time temperature of 1–2°. Our results suggest that wood production in the lowland rainforests of NE Costa Rica (and by extension in other tropical regions) may be severely reduced in future climates that are only slightly drier and/or warmer. 相似文献
15.
Despite the importance of measuring tropical forest biomass, the accuracy of biomass estimates is poorly constrained due to fundamental weaknesses in the design and implementation of field studies. We identify these issues and propose a radical paradigm shift to advance tropical forest biomass research to a firmer theoretical and empirical basis. 相似文献
16.
Questions: To what extent are the distributions of tropical rain forest tree ferns (Cyatheaceae) related to environmental variation, and is habitat specialization likely to play a role in their local coexistence? Location: Lowland rain forest at La Selva Biological Station, Costa Rica. Methods: Generalized linear (GLM) and generalized additive (GAM) logistic regression were used to model the incidence of four tree fern species in relation to environmental and neighbourhood variables in 1154 inventory plots regularly distributed across 6 km2 of old‐growth forest. Small and large size classes of the two most abundant species were modelled separately to see whether habitat associations change with ontogeny. Results: GLM and GAM model results were similar. All species had significant distributional biases with respect to micro‐habitat. Environmental variables describing soil variation were included in the models most often, followed by topographic and forest structural variables. The distributions of small individuals were more strongly related to environmental variation than those of larger individuals. Significant neighbourhood effects (spatial autocorrelation in intraspecific distributions and non‐random overlaps in the distributions of certain species pairs) were also identified. Overlaps between congeners did not differ from random, but there was a highly significant overlap in the distributions of the two most common species. Conclusions: Our results support the view that habitat specialization is an important determinant of where on the rain forest landscape tree ferns grow, especially for juvenile plants. However, other factors, such as dispersal limitation, may also contribute to their local coexistence. 相似文献
17.
Tree cavities are a critical resource for many animals, especially as nesting sites for birds. Patterns of cavity distribution in temperate forests are well studied, yet little is known of cavities in tropical forests, despite a hypothesized decrease in cavity availability with decreasing latitude. We studied cavity density and distribution in a wet lowland tropical forest in Costa Rica and compared our results with estimates from forests around the world. Cavities at our site were common, occurred frequently in living trees, and were often formed by damage or decay rather than by woodpeckers. Most cavities had small openings, and woodpecker-created cavities were nonrandomly oriented. Contrary to prediction, cavity density appears to increase from the poles to the tropics. We suggest potential mechanisms to explain these patterns. 相似文献
18.
Michael G. McCay 《Biotropica》2003,35(1):94-102
Movement of air under the canopy of a forest affects the gliding of animals such as frogs, snakes, geckos, and squirrels; the dispersal of pollen, seeds, and spores; as well as convective transport of heat and carbon dioxide. Wind speed profiles were measured under the canopy of a lowland rain forest during the morning, afternoon, and night at three sites in Costa Rica to determine the aerodynamic environment in which tree frogs maneuver while gliding. During the course of a day, average and maximum wind speeds were highest in the morning and midday, and lowest at night. Wind speeds under the canopy were highest near the top of the canopy and were lowest near the canopy floor in the morning and afternoon, and exhibited little variation with respect to height at night. Turbulence intensity (a common measure of gustiness) was constant (ca 1) for all times of day, heights in the canopy, and sites, but the absolute magnitudes of wind gust speeds were higher during the day than at night. Power spectral densities revealed that most of the variation in wind speeds occurred at frequencies that could potentially affect the gliding of tree frogs. Tree frogs (and many other gliding animals), however, glide at night and thereby avoid the higher wind speeds that occur by day. Computer simulations of the dynamic motions of frogs while gliding revealed that the night levels of wind gusts have little effect on the direction of gliding of tree frogs. 相似文献
19.
Sally P. Horn Robert L. Sanford Jr. David Dilcher Terry A. Lott Paul R. Renne Michael C. Wiemann Duane Cozadd Orlando Vargas 《Biotropica》2003,35(3):434-441
Radiocarbon dating and 40Ar/39Ar analysis of overlying tephra indicate that plant fossil assemblages exposed by stream erosion and well construction in and near La Selva Biological Station in eastern lowland Costa Rica are Pleistocene in age. We identified plant taxa based on wood, leaves, fruits, seeds, pollen, and spores examined from three sites at ca 30 m elevation. Extrapolating from modern ranges and surface temperature lapse rates suggests paleotemperatures 2.5–3.1°C cooler than at present 相似文献
20.
Karen D. Holl Rakan A. Zahawi Rebecca J. Cole Rebecca Ostertag Susan Cordell 《Restoration Ecology》2011,19(4):470-479
Planting tree seedlings in small patches (islands) has been proposed as a method to facilitate forest recovery that is less expensive than planting large areas and better simulates the nucleation process of recovery. We planted seedlings of four tree species at 12 formerly agricultural sites in southern Costa Rica in two designs: plantation (entire 50 × 50 m area planted) and island (six patches of three sizes). We monitored seedling survival, height, and canopy area over 3 years. To elucidate mechanisms influencing survival and growth, we measured soil and foliar nutrients, soil compaction, and photosynthesis. Survival of all species was similar in the two planting designs. Seedling height and canopy area were greater in plantations than islands at most sites, and more seedlings in islands decreased in height due to damage incurred during plot maintenance. Survival, height, and canopy area were both site‐ and species‐specific with the two N‐fixing species (Inga edulis and Erythrina poeppigiana) greater than the other species (Terminalia amazonia and Vochysia guatemalensis). Foliar N was higher in Terminalia and Vochysia in sites where Inga growth was greater. Soil nutrients, however, explained a small amount of the large differences in growth across sites. Leaf mass per area was higher in islands, and P use efficiency was higher in plantations. Our results show advantages (good seedling survival, cheaper) and disadvantages (more seedling damage, slightly lower growth) to the island planting design. Our study highlights the importance of replicating restoration strategies at several sites to make widespread management recommendations. 相似文献