首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germlings were grown from Monostroma latissimum Wittr. reproductive cells on nylon ropes. Holdfast threads and some uniseriate filaments were observed to have penetrated the fibers of the dispersed ropes. The algal filaments were easily isolated and prepared for cultivation, in comparison to the methods of enzymatically isolated algal protoplasts. Under low light (60–100 μmol photons · m?2 · s?1), the algal filaments grew to form a filamentous mass. When cultivated under stronger light (300–600 μmol photons · m?2 · s?1), they grew to initially form tubular thalli and then, when cultivated under light intensities >700 μmol photons · m?2 · s?1, formed foliaceous thalli. Consequently, the filaments were homogenized into small sections and then sewed on the nylon rope for algal mass cultivation. Under high‐intensity natural light, they grew to form leafy thalli.  相似文献   

2.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

3.
Both colonies and free‐living cells of the terrestrial cyanobacterium, Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault, were cultured under aquatic conditions to develop the techniques for the cultivation and restoration of this endangered resource. The colonial filaments disintegrated with their sheaths ruptured in about 2 days without any desiccating treatments. Periodic desiccation played an important role in preventing the alga from decomposing, with greater delays to sheath rupture with a higher frequency of exposure to air. The bacterial numbers in the culture treated with seven periods of desiccation per day were about 50% less compared with the cultures without the desiccation treatment. When bacteria in the culture were controlled, the colonial filaments did not disintegrate and maintained the integrity of their sheath for about 20 days even without the desiccation treatments, indicating the importance of desiccation for N. flagelliforme to prevent them from being disintegrated by bacteria. On the other hand, when free‐living cells obtained from crushed colonial filaments were cultured in liquid medium, they developed into single filaments with sheaths, within which multiple filaments were formed later on as a colony. Such colonial filaments were developed at 15, 25, and 30° C at either 20 or 60 μmol photons·m?2·s?1; colonies did not develop at 180 μmol photons·m?2·s?1, though this light level resulted in the most rapid growth of the cells. Conditions of 60 μmol photons·m?2·s?1 and 25° C appeared to result in the best colonial development and faster growth of the sheath‐held colonies of N. flagelliforme when cultured indoor under aquatic conditions.  相似文献   

4.
Motility of estuarine epipelic (mud‐inhabiting) diatoms is an important adaptation to living in biofilms present within fine sediments. Motility allows cells to migrate within the photic zone in response to a wide range of environmental stimuli. The motile responses of two species of benthic diatoms to photon fluence rates and spectral quality were investigated. Cultures of Navicula perminuta (Grunow) in van Heurck and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reimann both exhibited photoaccumulation at ~200 μmol · m?2 · s?1 and photodispersal from photon flux densities (PFDs) of ~15 μmol · m?2 · s?1. Photokinesis (changing cell speed) contributed toward photodispersal for both species, and red light (λ = 681–691 nm) was most effective at inducing this process. N. perminuta showed a phototactic (directional) response, with active movement in response to a light gradient. Although this response was exhibited in white light, these directional responses were only elicited by wavelengths from 430 to 510 nm. In contrast, C. closterium did not exhibit phototaxis under any light conditions used in this study. Motile benthic diatoms thus exhibit complex and sophisticated responses to light quantity and quality, involving combinations of photokinesis and phototaxis, which can contribute toward explaining the patterns of large‐scale cell movements observed in natural estuarine biofilms.  相似文献   

5.
Spirogyra filaments show unique photomovement that differs in response to blue, red, and far‐red light. Phototropins involved in the blue‐light movement have been characterized together with downstream signaling components, but the photoreceptors and mechanical effectors of red‐ and far‐red light movement are not yet characterized. The filaments of Spirogyra varians slowly bent and aggregated to form a tangled mass in red light. In far‐red light, the filaments unbent, stretched rapidly, and separated from each other. Mannitol and/or sorbitol treatment significantly inhibited this far‐red light movement suggesting that turgor pressure is the driving force of this movement. The bending and aggregating movements of filaments in red light were not affected by osmotic change. Three phytochrome homologues isolated from S. varians showed unique phylogenetic characteristics. Two canonical phytochromes, named SvPHY1 and SvPHY2, and a noncanonical phytochrome named SvPHYX2. SvPHY1 is the first PHY1 family phytochrome reported in zygnematalean algae. The gene involved in the transport of phytochromes into the nucleus was characterized, and its expression in response to red and far‐red light was measured using quantitative PCR. Our results suggest that the phytochromes and the genes involved in the transport system into the nucleus are well conserved in S. varians.  相似文献   

6.
Lipid content and lipid class composition were determined in stream periphyton and the filamentous green algae Cladophora sp. and Spirogyra sp, Sterols and phospholipids were compared to chlorophyll a (chl a) as predictors of biomass for stream periphyton and algae. Chlorophyll a, phospholipids, and sterols were each highly correlated with ash-free dry mass (AFDM) (r2 > 0.98). Stream periphyton exposed naturally to high light (HL) and low light (LL) had chl a concentrations (μg chl a-mg?1AFDM) of 7.9± 0.7 and 12.4 ± 2.9, respectively, while the sterol concentrations of these HL and LL stream periphyton (1.6 ± 0.4) were not significantly different (P > 0.05). Periphyton exposed to an irradiance of 300 μmol photons·m?2s?1 in the laboratory for 60 h had 5.6 ± 0.55 μg chl a·mg?1 AFDM, but the same periphyton exposed to 2% incident light for the same amount of time had 11.0 ± 0.56 μg chl mg?1 AFDM. Sterol concentrations in these periphyton communities remained unchanged (1.5 ± 0.3 μg·mg?1AFDM), Similar results (i.e. changes in chl a but stability of sterol concentrations in response to irradiance changes) were also found for Cladophora and Spirogyra in laboratory experiments. Sterols can be quantified rapidly from a few milligrams of algae and appear to be a useful predictor of eukaryote biomass, whereas cellular levels of chl a vary substantially with light conditions. Phospholipids (or phospholipid fatty acids) are considered to be a reliable measure of viable microbial biomass. Nevertheless, phospholipid content varied substantially and unpredictably among algae and periphyton under different light regimes. Irradiance also had a significant effect on storage lipids: HL Cladophora and HL periphyton had 2 × and 5 × greater concentrations of triacylglycerols, respectively, compared to their LL forms. HL and LL algae also differed in the concentration of several major fatty acids. These light-induced changes in algal lipids and fatty acids have important implications for grazers.  相似文献   

7.
Although Spirogyra Link (1820) is a common mat‐forming filamentous alga in fresh waters, little is known of its ecology. A 2‐year field study in Surrey Lake, Indiana, showed that it grew primarily in the spring of each year. The population consisted of four morphologically distinct filamentous forms, each exhibiting its own seasonal distribution. A 45‐μm‐wide filament was present from February to late April or early May, a 70‐μm‐wide form was present from late April to mid‐June, a 100‐μm‐wide form was present from February to mid‐June, and a 130‐μm‐wide form appeared only in February of 1 of 2 study years. The 70‐ and 100‐μm‐wide forms contributed to the peak amount of biomass observed in late May and early June. Multiple regression analysis indicated that the presence of the 45‐, 70‐, and 100‐μm‐wide forms was negatively correlated with temperature. Presence of the 130‐μm‐wide form was negatively correlated with irradiance. Isolates of these filament forms were exposed to temperature (15, 25, and 35° C)/irradiance (0, 60, 200, 400, 900, and 1500 μmol·m?2·s?1) combinations in the laboratory. Growth rates of the 45‐μm‐wide form were negative at all irradiances at 35° C, suggesting that this form is susceptible to high water temperatures. However, growth rates of the other forms did not vary at the different temperatures or at irradiances of 60 μmol·m?2·s?1 or above. Net photosynthesis was negative at 35° C and 1500 μmol·m?2·s?1 for the 100‐ and 130‐μm‐wide forms but positive for the 70‐μm‐wide form. All forms lost mat cohesiveness in the dark, and the 100‐ and 130‐μm‐wide forms lost mat cohesiveness under high irradiances and temperature. Thus, the morphological forms differed in their responses to irradiance and temperature. We hypothesize that the rapid disappearance of Spirogyra populations in the field is due to loss of mat cohesiveness under conditions of reduced net photosynthesis, for example, at no to low light for all forms or at high light and high temperatures for the 100‐ and 130‐μm‐wide forms. Low light conditions can occur in the interior of mats as they grow and thicken or under shade produced by other algae.  相似文献   

8.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

9.
A CO2 concentrating mechanism has been identified in the phycoerythrin-possessing Synechococcus sp. WH7803 and has been observed to be severely inhibited by short exposure to elevated light intensities. A light treatment of 300–2000 μmol quanta·m?2·s?1 resulted in a considerable decay in the variable fluorescence of PSII with time, suggesting decreased efficiency of energy transfer from the phycobilisomes, direct damage to the reaction center II, or both. Measurements of the activity of PSII and changes in fluorescence emission spectra during a light treatment of 1000 μmol quanta·m?2·s?1 indicated considerable reduction in the energy flow from the phycocyanin to the phycobilisome terminal acceptor and chlorophyll a. Consequently, whereas the maximal photosynthetic rate, at saturating light and Co2 concentration, was hardly affected by a light treatment of 1000 μmol quanta·m?2·s?1 for 2 h, the light intensity required to reach that maximum increased with the duration of the light treatment.  相似文献   

10.
The influence of light quality on positive phototopotaxis by the gliding, unicellular red alga Porphyridium purpureum was obtained using interference filters. Cells exposed to 3 × 10?7 mol · m2· s?1 of various wavelengths for 72 h showed maximum topotaxis at 420 and 440 nm. The lower threshold for positive, movement was approximately 5 × 10?8 mol · m?2· s?1. Random movement occurred at nonactinic wavelengths, and no movement occurred in the dark. Cell motility appeared to be unaffected by light polarity, suggesting that the photoreceptor(s) for topotaxis and photokinesis are randomly oriented.  相似文献   

11.
The relative importance of respiration and organic carbon release to the efficiency of carbon specific growth of Skeletonema costatum (Grev.) Clave was evaluated over a light range from 1500–15 μE · m?2· s?1. Net growth efficiency ranged from 0.45–0.69 with a maximum at 130 μE · m?2· s?1. Respiration was 93% or more of the variations in growth efficiency. Organic carbon release ranged from 0–7% of gross production and increased with light intensity. Carbon specific particulate production was a hyperbolic function of incident light intensity and was related exponentially to particulate carbon production per unit chlorophyll a. Full sunlight conditions, 1500 μE · m?2· s?1, did not induce photoinhibition of gross production. Variations in the efficiency of growth of S. costatum were minimized over a wide range of light intensities mainly because of variations in cellular pigments which permitted the efficient utilization of available light energy, and a reduction in the losses of carbon which increases the growth rate, possibly as a consequence of the recycling of respired carbon within the cell.  相似文献   

12.
A dense community of shade adapted microalgae dominated by the diatom Trachyneis aspera is associated with a siliceous sponge spicule mat in McMurdo Sound, Antarctica. Diatoms at a depth of 20 to 30 m were found attached to spicule surfaces and in the interstitial water between spicules. Ambient irradiance was less than 0.6 μE · m?2· s?1 due to light attenuation by surface snow, sea ice, ice algae, and the water column. Photosynthesis-irradiance relationships determined by the uptake of NaH14CO3 revealed that benthic diatoms beneath annual sea ice were light-saturated at only 11 μE·m?2·s?1, putting them among the most shade adapted microalgae reported. Unlike most shade adapted microalgae, however, they were not photoinhibited even at irradiances of 300 μE·m?2·s?1. Although in situ primary production by benthic diatoms was low, it may provide a source of fixed carbon to the abundant benthic invertebrates when phytoplankton or ice algal carbon is unavailable.  相似文献   

13.
Ceratium fusus (Ehrenb.) Dujardin was exposed to light of different wavelengths and photon flux densities (PFDs) to examine their effects on mechanically stimulable bioluminescence (MSL). Photoinhibition of MSL was proportional to the logarithm of PFD. Exposure to I μmol photons·m?2s?1 of broadband blue light (ca. 400–500 nm) produced near-complete photoinhibition (≥90% reduction in MSL) with a threshold at ca. 0.01 μmol photons·m?2·s?1. The threshold of photoinhibition was ca. an order of magnitude greater for both broadband green (ca. 500–580 nm) and red light (ca. 660–700 nm). Exposure to narrow spectral bands (ca. 10 nm half bandwidth) from 400 and 700 nm at a PFD of 0.1 μmol photons·m?2·s?1 produced a maximal response of photoinhibition in the blue wavelengths (peak ca. 490 nm). A photoinhibition response (≥ 10%) in the green (ca. 500–540 nm) and red wavelengths (ca. 680 nm) occurred only at higher PFDs (1 and 10 μmol photons·m?2·s?1). The spectral response is similar to that reported for Gonyaulax polyedra Stein and Pyrocystis lunula Schütt and unlike that of Alexandrium tamarense (Lebour) Balech et Tangen. The dinoflagellate's own bioluminescence is two orders of magnitude too low to result in self-photoinhibition. The quantitative relationships developed in the laboratory predict photoinhibition of bioluminescence in populations of C. fusus in the North Atlantic Ocean.  相似文献   

14.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

15.
In many lakes in the northern United States and Canada the filamentous green alga Ulothrix zonata (Weber and Mohr) Kütz grows abundantly in early spring in shallow waters. Asexual reproduction occurs by formation of quadriflagellate zoospores which disrupt, the integrity of the cells upon release causing the filament to disintegrate. Study of the effects of 100 different combinations of irradiance, temperature and photoperiod revealed that zoospore formation is favored by high temperatures near 20°C, high light levels of 520 μE·m?2·s?1 and photoperiods of either short day (8:16 h light-dark) or long day cycles (16:8 h light-dark). Zoospore formation is minimal under conditions of low temperature (5°C), low irradiance (32.5 μE·m?2·s?1) and neutral day-lengths (12:12 h light-dark). These observations explain the decline in U. zonata biomass when water temperatures rise above 10° C. The combined effect of rising water temperatures and increasing daylengths causes progressively more filaments to switch from vegetable growth to zoospore production resulting in an increasing loss of biomass.  相似文献   

16.
The internal lipid, carotenoid, and toxin concentrations of Karenia brevis (C. C. Davis) Gert Hansen and Moestrup are influenced by its ability to use ambient light and nutrients for growth and reproduction. This study investigated changes in K. brevis toxicity, lipid class, and carotenoid concentrations in low‐light, nitrate‐replete (250 μmol quanta · m?2 · s?1, 80 μM NO3); high‐light, nitrate‐replete (960 μmol quanta · m?2 · s?1, 80 μM NO3); and high‐light, nitrate‐reduced (960 μmol quanta · m?2 · s?1, <5 μM NO3) mesocosms. Reverse‐phase HPLC quantified the epoxidation state (EPS) of the xanthophyll‐cycle pigments diadinoxanthin and diatoxanthin, and a Chromarod Iatroscan thin layer chromatography/flame ionization detection (TLC/FID) system quantified changes in lipid class concentrations. EPS did not exceed 0.20 in the low‐light mesocosm, but increased to 0.65 in the high‐light mesocosms. Triacylglycerol and monogalactosyldiacylglycerol (MGDG) were the largest lipid classes consisting of 9.3% to 48.7% and 37.3% to 69.7% of total lipid, respectively. Both lipid classes also experienced the greatest concentration changes in high‐light experiments. K. brevis increased EPS and toxin concentrations while decreasing its lipid concentrations under high light. K. brevis may mobilize its toxins into the surrounding environment by reducing lipid concentrations, such as sterols, limiting competition, or toxins are released because lipids are decreased in high light, reducing any protective mechanism against their own toxins.  相似文献   

17.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

18.
Variations of pigment content in the microscopic conchocelis stage of four Alaskan Porphyra species were investigated in response to environmental variables. Conchocelis filaments were cultured under varying conditions of irradiance and nutrient concentrations for up to 60 d at 11°C and 30 psu salinity. Results indicate that conchocelis filaments contain relatively high concentrations of phycobilins under optimal culture conditions. Phycobilin pigment production was significantly affected by irradiance, nutrient concentration, and culture duration. For Porphyra abbottiae V. Krishnam., Porphyra sp., and Porphyra torta V. Krishnam., maximal phycoerythrin (63.2–95.1 mg · g dwt?1) and phycocyanin (28.8–64.8 mg · g dwt?1) content generally occurred at 10 μmol photons · m?2 · s?1, f/4–f/2 nutrient concentration after 10–20 d of culture. Whereas for Porphyra hiberna S. C. Lindstrom et K. M. Cole, the highest phycoerythrin (73.3 mg · g dwt?1) and phycocyanin (70.2 mg · g dwt?1) content occurred at 10 μmol photons · m?2 · s?1, f nutrient concentration after 60 d in culture. Under similar conditions, the different species showed significant differences in pigment content. P. abbottiae had higher phycoerythrin content than the other three species, and P. hiberna had the highest phycocyanin content. P. torta had the lowest phycobilin content.  相似文献   

19.
Spirogyra and Closterium exhibit active motility. This motility is associated with the secretion of pectic mucilage from the cells. The gliding of these cells is not directed toward light but photosynthesis is the energy source for it. The secretion of mucilage causes older Closterium cultures to become thick gelatinous clusters. Spirogyra filaments when undisturbed grow to form thick multistranded rings. This growth pattern might result from the tendency of the filaments to rotate on their long axis.  相似文献   

20.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号