首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of ATP plus two other ribonucleoside triphosphates or in reactions containing all four ribonucleoside triphosphates and actinomycin D, vaccinia virus synthesizes in vitro discrete low-molecular-weight RNA molecules ranging in size from about 20 to several hundred bases. A novel feature of these small RNA molecules is that they are capped and methylated at the 5' terminus, containing both mGpppGm and mGpppAm type cap structures, and in addition these molecules are polyadenylated at the 3' terminus. Hybridization of these RNAs to restriction fragments derived from vaccinia virus DNA indicates a considerable degree of complexity, suggesting the presence of a large number of promoters throughout the genome. However, measurable sensitivity to pancreatic RNase of the 5' capped end of these RNAs while in hybrid form to the DNA suggests other possible roles for these small RNAs in vaccinia virus mRNA biogenesis.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
K Dimock  C M Stolzfus 《Biochemistry》1978,17(17):3627-3632
Cycloleucine, a competitive inhibitor of ATP: L-methionine S-adenosyltransferase in vitro, has been used to reduce intracellular concentrations of S-adenosylmethionine and by this means to inhibit virion RNA methylation in chicken embryo cells that are infected with B77 avian sarcoma virus. Under conditions of cycloleucine treatment, where virus production as measured by incorporation of radioactive precursors or by number of infectious particles is not significantly affected, the internal m6A methylations of the avian sarcoma virus genome RNA are inhibited greater than 90%. The predominant 5'-terminal structure in viral RNA produced by treated cells in m7G(5')pppG (cap zero) rather than m7G-(5')pppGm (cap 1). It appears from these results that internal m6A and penultimate ribose methylations are not required for avian sarcoma RNA synthesis and function. Furthermore, these methylations are apparently not required for transport of genome RNA to virus assembly sites. The insensitivity of the 5'-terminal m7G methylation to inhibition by cycloleucine suggests that the affinity of S-adenosylmethionine for 7-methylguanosine methyltransferase is significantly greater than for the 2'-0-methyltransferases or the N6-methyltransferases.  相似文献   

10.
11.
12.
13.
Nucleoside triphosphate phosphohydrolase [EC 3.6.1.15] activity was found to be included in silkworm cytoplasmic polyhedrosis (CP) virus, which synthesizes mRNA carrying the 5'-terminal modification. This enzyme releases orthophosphate from the gamma-position in a nucleoside triphosphate, leaving nucleoside diphosphate. The rate of hydrolysis of ATP is faster than that of any other ribonucleoside triphosphate. Deoxy ATP is hydrolyzed rather faster than ATP. However, polynucleotides carrying triphosphate at the 5'-terminus, that is, 4S RNA which was synthesized by E. coli RNA polymerase [EC 2.7.7.6] using calf thymus DNA as a template, and the phage Q beta RNA (30S), are not effective substrates for this enzyme. Although the CP virion loses the viral genome and one kind of protein component on proteolytic treatment with pronase, the partially degraded virion still retains phosphohydrolase activity. The phosphohydrolase must therefore be associated firmly with the virion. This enzyme does not require the presence of nucleic acid for its function. Phosphohydrolysis of ATP by this enzyme activity represents a first step in the synthesis of the 5'-terminal modified mRNA of CP virus.  相似文献   

14.
15.
16.
17.
Purified cores of vesicular stomatitis virus contain an enzymatic activity that converts GDP, UDP, and CDP into their corresponding triphosphates using ATP as the phosphate donor. Thus, the virion-associated RNA polymerase can synthesize mRNA normally in vitro even when one of the ribonucleoside triphosphates is replaced by its corresponding diphosphate. RNA synthesis does not proceed if ATP is replaced by ADP. Similarly RNA synthesis is impaired if CDP and UDP are present in the same reaction. The role of the nucleoside diphosphate kinase (NDP kinase, EC 2.7.4.6) in vesicular stomatitis virus mRNA synthesis in vitro is discussed.  相似文献   

18.
19.
Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号