首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi.   总被引:3,自引:2,他引:1       下载免费PDF全文
In Erwinia chrysanthemi, the gene kdgT encodes a transport system responsible for the uptake of ketodeoxyuronates. We studied the biochemical properties of this transport system. The bacteria could grow on 2,5-diketo-3-deoxygluconate but not on 2-keto-3-deoxygluconate. The 2-keto-3-deoxygluconate entry reaction displayed saturation kinetics, with an apparent Km of 0.52 mM (at 30 degrees C and pH 7). 5-Keto-4-deoxyuronate and 2,5-diketo-3-deoxygluconate appeared to be competitive inhibitors, with Kis of 0.11 and 0.06 mM, respectively. The 2-keto-3-deoxygluconate permease could mediate the uptake of glucuronate with a low affinity. kdgT was cloned on an R-prime plasmid formed by in vivo complementation of a kdgT mutation of Escherichia coli. After being subcloned, it was mutagenized with a mini-Mu-lac transposable element able to form fusions with the lacZ gene. We introduced a kdgT-lac fusion into the E. chrysanthemi chromosome by marker exchange recombination and studied its regulation. kdgT product synthesis was not induced by external 2-keto-3-deoxygluconate in the wild-type strain but was induced by galacturonate and polygalacturonate. Two types of regulatory mutants able to grow on 2-keto-3-deoxygluconate as the sole carbon source were studied. Mutants of one group had a mutation in the operator region of kdgT; mutants of the other group had a mutation in kdgR, a regulatory gene controlling kdgT expression.  相似文献   

2.
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity.  相似文献   

3.
Acute and chronic ethanol administration increase autophagic vacuole (i.e., autophagosome; AV) content in liver cells. This enhancement depends on ethanol oxidation. Here, we used parental (nonmetabolizing) and recombinant (ethanol-metabolizing) Hep G2 cells to identify the ethanol metabolite that causes AV enhancement by quantifying AVs or their marker protein, microtubule-associated protein 1 light chain 3-II (LC3-II). The ethanol-elicited rise in LC3-II was dependent on ethanol dose, was seen only in cells that expressed alcohol dehydrogenase (ADH) and was augmented in cells that coexpressed cytochrome CYP2E1 (P450 2E1). Furthermore, the rise in LC3-II was inversely related to a decline in proteasome activity. AV flux measurements and colocalization of AVs with lysosomes or their marker protein Lysosomal-Associated Membrane Protein 1 (LAMP1) in ethanol-metabolizing VL-17A cells (ADH+/CYP2E1+) revealed that ethanol exposure not only enhanced LC3-II synthesis but also decreased its degradation. Ethanol-induced accumulation of LC3-II in these cells was similar to that induced by the microtubule inhibitor, nocodazole. After we treated cells with either 4-methylpyrazole to block ethanol oxidation or GSH-EE to scavenge reactive species, there was no enhancement of LC3-II by ethanol. Furthermore, regardless of their ethanol-metabolizing capacity, direct exposure of cells to acetaldehyde enhanced LC3-II content. We conclude that both ADH-generated acetaldehyde and CYP2E1-generated primary and secondary oxidants caused LC3-II accumulation, which rose not only from enhanced AV biogenesis, but also from decreased LC3 degradation by the proteasome and by lysosomes.  相似文献   

4.
ADAMTSs (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) are secreted proteases dependent on Zn2+/Ca2+, involved in physiological and pathological processes and are part of the extracellular matrix (ECM). Here, we investigated if ADAMTS-1 is required for invasion and migration of cells and the possible mechanism involved. In order to test ADAMTS-1's role in ovarian cancer cells (CHO, NIH-OVCAR-3 and ES2) and NIH-3 T3 fibroblasts, we modified the levels of ADAMTS-1 and compared those to parental. Cells exposed to ADAMTS-1-enriched medium exhibited a decline in cell migration and invasion when compared to controls with or without a functional metalloproteinase domain. The opposite was observed in cells when ADAMTS-1 was deleted via the CRISPR/Cas9 approach. The decline in ADAMTS-1 levels enhanced the phosphorylated form of Src and FAK. We also evaluated the activities of cellular Rho GTPases from cell lysates using the GLISA® kit. The Cdc42-GTP signal was significantly increased in the CRISPR ADAMTS-1 ES-2 cells. By a Förster resonance energy transfer (FRET) biosensor for Cdc42 activity in ES-2 cells we demonstrated that Cdc42 activity was strongly polarized at the leading edge of migrating cells with ADAMTS-1 deletion, compared to the wild type cells. As conclusion, ADAMTS-1 inhibits proliferation, polarization and migration.  相似文献   

5.
One of the metabolic fates of 3-deoxyglucosone, a product of protein deglycation and a potent glycating agent, is to be oxidized to 2-keto-3-deoxygluconate, but the enzyme that catalyzes this reaction is presently unknown. Starting from human erythrocytes, which are known to convert 3-deoxyglucosone to 2-keto-3-deoxygluconate, we have purified to near homogeneity a NAD-dependent dehydrogenase that catalyzes this last reaction at neutral pH. Sequencing of a 55 kDa band co-eluting with the enzymatic activity in the last step indicated that it corresponded to aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme known to catalyze the oxidation of retinaldehyde to retinoic acid. Overexpression of human ALDH1A1 in HEK cells led to a more than 20-fold increase in 3-deoxyglucosone dehydrogenase activity. In mouse tissues 3-deoxyglucosone dehydrogenase activity was highest in liver, intermediate in lung and testis, and negligible or undetectable in other tissues, in agreement with the tissue distribution of ALDH1A1 mRNA. 3-deoxyglucosone dehydrogenase activity was undetectable in tissues from ALDH1A1(-/-) mice. ALDH1A1 appears therefore to be the major if not the only enzyme responsible for the oxidation of 3-deoxyglucosone to 2-keto-3-deoxygluconate. The urinary excretion of 2-keto-3-deoxygluconate amounted to 16.7 micromol/g creatinine in humans, indicating that 3-deoxyglucosone may be quantitatively a more important substrate than retinaldehyde for ALDH1A1.  相似文献   

6.
Mutants of Erwinia chrysanthemi impaired in pectin degradation were isolated by chemical and Mu d(Ap lac) insertion mutagenesis. A mutation in the kduD gene coding for 2-keto-3-deoxygluconate oxidoreductase prevented the growth of the bacteria on polygalacturonate as the sole carbon source. Analysis of the kduD::Mu d(Ap lac) insertions indicated that kduD is either an isolated gene or the last gene of a polycistronic operon. Some of the Mu d(Ap lac) insertions were kduD-lac fusions in which beta-galactosidase synthesis reflected kduD gene expression. In all these fusions, beta-galactosidase activity was shown to be sensitive to catabolite repression by glucose and to be inducible by polygalacturonate, galacturonate, and other intermediates of polygalacturonate catabolism. Galacturonate-mediated induction was prevented by a mutation which blocked its metabolism to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate appeared to be the true inducer of kduD expression resulting from galacturonate degradation. 5-Keto-4-deoxyuronate or 2,5-diketo-3-deoxygluconate were the true inducers, originating from polygalacturonate cleavage. These three intermediates also appeared to induce pectate lyases, oligogalacturonate lyase, and 5-keto-4-deoxyuronate isomerase synthesis.  相似文献   

7.
2-Aryloxypropionic acids 3a–f, compounds with herbicidal activity, have been prepared with high enantiomeric purity by microbial hydrolysis of the corresponding racemic nitriles and amides in presence ofBrevibacterium imperiale cells.  相似文献   

8.
Both cell suspension cultures of Thalictrum flavum and T. dipterocarpum were found to produce berberine (0.3 and 0.4 g/l, respectively) as a main alkaloid. Berberine production in the latter was markedly stimulated by 1-naphthaleneacetic acid in combination with 6-benzylaminopurine, whereas it was rather suppressed by the same auxin in the former. T. flavum cultures accumulated berberine and columbamine in the cells without releasing them into medium. On the other hand, T. dipterocarpum cultures released berberine into medium during the logarithmic growth phase, but thereafter accumulated all the berberine synthesized in the cells.Abbreviations LS Linsmaier and Skoog - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - BA 6-benzylaminopurine - TFG a culture strain of T. flavum ssp. glaucum - TDP a culture strain of T. dipterocarpum  相似文献   

9.

Background  

Pathogenic Yersinia species (Y. enterocolitica, Y. pestis, Y. pseudotuberculosis) share a type three secretion system (TTSS) which allows translocation of effector proteins (called Yops) into host cells. It is believed that proteins are delivered through a hollow needle with an inner diameter of 2–3 nm. Thus transport seems to require substrates which are essentially unfolded. Recent work from different groups suggests that the Yersinia TTSS cannot accommodate substrates which are folded prior to secretion. It was suggested that folding is prevented either by co-translational secretion or by the assistance of specific Yop chaperones (called Sycs).  相似文献   

10.
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. the inability of mutant cells to utilize these substrates was caused by a failure to accomplish the catabolism of unsaturated digalacturonic acid (UDA). Study of enzymatic activities has established that mutant bacteria lost the ability to produce 2,5-diketo-3-deoxygluconate dehydrogenase, an enzyme of intracellular UDA utilization. Molecular cloning of the mutant gene was conducted, and its nucleotide sequence was determined. It was shown that the nucleotide sequence of this gene had an 82% homology with the sequence of Erwinia chrysanthemi EC3937 kduD gene encoding 2,5-diketo-3-deoxygluconate dehydrogenase. The intergene kduI–kduD region in bacteria Erwinia carotovora subsp. atroseptica is shorter in length by 98 nucleotides than the corresponding region of Erwinia chrysanthemi and does not contain promoter sequences. The kduD gene was located at 126.8 min of the Erwinia carotovora subsp. atroseptica genetic map.  相似文献   

11.
The ability of various prostaglandins (PGs) to affect the in vitro anamnestic immune response of keyhole limpet hemocyanin (KLH)-primed rabbit popliteal lymph node cells was investigated. Of the four PGs studied (PGA1, PGE2 and PGF), PGE1 was found to have a stimulatory effect, whereas PGA1, PGE2 and PGF were ineffective in stimulating or inhibiting the in vitro anamnestic response. Under the conditions studied, a 3.5-fold increase in antibody production was obtained in PGE1-treated, KLH-stimulated cultures. Maximum enhancement was obtained when 0.2 μg of PGE1 were added at the time of culture initiation and were allowed to remain in contact with the lymph node cells for 24 hours.  相似文献   

12.

Background  

In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.  相似文献   

13.
Callus and suspension cell lines were derived from haploid barley embryos produced by the Bulbosum method. Embryos 1 to 2 mm long callused on medium containing a low concentration of 2,4-dichlorophenoxyacetic acid (2,4-D). Fast-growing nodular, beige callus (Type 1), slow-growing, light brown, watery callus (Type 2) and a dense, light yellow, nodular callus (Type 3) were recovered. Type 3 callus was embryogenic and was produced on embryos 1 to 2 mm in length. Although callus cultures gradually became polyploid, a small proportion of haploid cells was retained and the majority of regenerated plantlets were haploid. The organogenic potential of long-term (Type 1) callus cultures was generally low and decreased with time. Attempts to inducede novo shoot formation in Type 1 cultures were not successful.  相似文献   

14.
Protoplasts were isolated from cotyledons and foliage leaves of cotton (Gossypium hirsutum and G. barbadense). Cotyledon protoplasts were larger and responded to culture better than leaf protoplasts. Cotyledon derived protoplasts regenerated cell walls and formed microcolonies of 2–3 cells in G. hirsutum and 5–8 cells in G. barbadense. However, the microcolonies did not grow beyond this stage. Protoplast yield and viability, cell wall regeneration and cell division were influenced by several factors, e.g., genotype, age, tissue and growth condition of donor plant, enzyme mixture and concentration, preplasmolysis period, incubation period, and culture medium.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - BAP 6-benzylaminopurine - GA3 gibberellic acid - p CPA p-chlorophenoxyacetic acid - MES 2[N-morpholino]ethanesulfonic acid  相似文献   

15.
Summary Diacetyl production by (Citr*)Lactococcus lactis subsp.lactis 3022 was found to be an oxygen-dependent reaction. The diacetyl production by the cells immobilized in conventional Ca-alginate gel beads (Diameter: 3 mm) was lower than that of the cells immobilized in Ca-alginate gel fibers (Diameter: 0.2 mm), probably because oxygen transfer to the immobilized cells is better in gel fibers than in gel beads.  相似文献   

16.
o-Succinylbenzoic acid (OSB) is an intermediate in the biosynthesis of shikimatederived anthraquinones. The cell free activation of o-succinylbenzoic acid in extracts of anthraquinone producing cells of Galium mollugo L. is demonstrated for the first time. This activation depends on the presence of ATP, coenzyme A and Mg2+. The o-succinylbenzoic acid coenzyme A ester was identified by converting it to 1,4-dihydroxy-2-naphthoic acid by a bacterial enzyme, viz. naphthoatesynthase. It is thus demonstrated that the o-succinylbenzoic acid coenzyme A ester derived from bacteria and from Galium mollugo cells are identical.  相似文献   

17.
Suspension cultured cells of the liverwort, Reboulia hemisphaerica and of the moss, Barbula unguiculata were independently subcultured in the medium containing 2% glucose in the dark or in the light for more than one year, and the photosynthetic activities of the final cultures were determined. Throughout the culture period light-grown cells of both species contained high amount of chlorophyll (4 to 34 g mg–1 dry weight) and showed a high photosynthetic activity (10 to 84 mol O2 mg–1 chlorophyll h–1). Dark-grown cells of R. hemisphaerica showed the same level of chlorophyll content and photosynthetic O2 evolving activity as light-grown cells. Although chlorophyll content in dark-grown B. unguiculata cells was ten-fold lower than that in light-grown cells, the photosynthetic activity of these dark-grown cells was higher than that of light-grown cells based on chlorophyll content.  相似文献   

18.
Addition of the animal ether phospholipid platelet-activating factor, 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine, (PAF) stimulates medium acidification in cultured soybean (Glycine max L.) cells. The pH of the medium after 8–10 hours is on the average one pH unit lower than in controls. With fusicoccin an average pH difference of 1.7 units is reached. Phospholipids, glycerol, 1-oleyl-2-acetyl-sn-glycerol, 1-0-hexadecyl-sn-glycerol, and triolein at the same concentrations as PAF had no stimulatory effect on medium acidification. The detergents CHAPS and deoxycholate lead to alkalinization of the medium whereas lysophosphatidylcholine (LPC), a detergent with structural similarity to PAF, shows no effect.Abbreviations CHAPS (3-((3-cholamylopropyl) dimethylamino)-1-propanesulfonate) - DOC deoxycholic acid - FC fusicoccin - LPC lysophosphatidylcholine - OAG 1-oleyl-2-acetyl-sn-glycerol - PAF platelet-activating factor = 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine - IAA indole-3-acetic acid  相似文献   

19.
20.
Oxidation of biphenyl by a Beijerinckia species   总被引:39,自引:0,他引:39  
A species of Beijerinckia that utilizes biphenyl as sole source of carbon for growth was isolated by enrichment culture. A mutant strain, Beijerinckia B8/36, oxidizes biphenyl to cis-2, 3-dihydroxy-1-phenylcyclohexa-4, 6-diene. Cell extracts, prepared from the parent organism, oxidize cis-2, 3-dihydroxy-1-phenylcyclohexa-4, 6-diene to 2, 3-dihydroxy-biphenyl. The physical properties of both metabolites are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号