首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deleting species from model food webs   总被引:1,自引:0,他引:1  
Although self-fertilization and its evolutionary consequences have been widely studied, the relative influence of genetic and environmental factors on the determination of mixed-mating systems remains poorly known. In 1999 and 2000, we surveyed the mating system, the population dynamics and some life-history traits of four populations of the freshwater snail Biomphalaria pfeifferi , the major intermediate host of Schistosoma mansoni in Africa, in two areas of Madagascar (Itasy and Antananarivo). We confirmed that B. pfeifferi is a predominant selfer, with selfing rates ranging between 80 and 100%. Temporal and geographical variation of the selfing rate was observed at both local and large spatial scale. Historical processes of colonization and invasion of B. pfeifferi in Madagascar could explain the geographical variation of the mating system observed at regional scale. Pure selfing has probably evolved in the two populations of Antananarivo area as a reproductive assurance strategy in a metapopulation where extinction is frequent and migration rare. The reproductive assurance hypothesis does not explain the spatio-temporal mating system variations observed in Itasy area. However genetic factors including inbreeding depression-the expression of which can be environmentally mediated-and metapopulation dynamics could influence the mating system in both populations sampled in Itasy and lead to different levels of evolutionary stable intermediate selfing rate in this region. Our results therefore highlight the influence of environmental heterogeneity and stochasticity on mating system.  相似文献   

2.
Theory predicts that colonization of new areas will be associated with population bottlenecks that reduce within-population genetic diversity and increase genetic differentiation among populations. This should be especially true for weedy plant species, which are often characterized by self-compatible breeding systems and vegetative propagation. To test this prediction, and to evaluate alternative scenarios for the history of introduction, the genetic diversity of Rubus alceifolius was studied with amplified fragment length polymorphism (AFLP) markers in its native range in southeast Asia and in several areas where this plant has been introduced and is now a serious weed (Indian Ocean islands, Australia). In its native range, R. alceifolius showed great genetic variability within populations and among geographically close populations (populations sampled ranging from northern Vietnam to Java). In Madagascar, genetic variability was somewhat lower than in its native range, but still considerable. Each population sampled in the other Indian Ocean islands (Mayotte, La Réunion, Mauritius) was characterized by a single different genotype of R. alceifolius for the markers studied, and closely related to individuals from Madagascar. Queensland populations also included only a single genotype, identical to that found in Mauritius. These results suggest that R. alceifolius was first introduced into Madagascar, perhaps on multiple occasions, and that Madagascan individuals were the immediate source of plants that colonized other areas of introduction. Successive nested founder events appear to have resulted in cumulative reduction in genetic diversity. Possible explanations for the monoclonality of R. alceifolius in many areas of introduction are discussed.  相似文献   

3.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

4.
The potential effect of population outbreaks on within and between genetic variation of populations in pest species has rarely been assessed. In this study, we compare patterns of genetic variation in different sets of historically frequently outbreaking and rarely outbreaking populations of an agricultural pest of major importance, the migratory locust, Locusta migratoria . We analyse genetic variation within and between 24 populations at 14 microsatellites in Western Europe, where only ancient and low-intensity outbreaks have been reported (non-outbreaking populations), and in Madagascar and Northern China, where frequent and intense outbreak events have been recorded over the last century (outbreaking populations). Our comparative survey shows that (i) the long-term effective population size is similar in outbreaking and non-outbreaking populations, as evidenced by similar estimates of genetic diversity, and (ii) gene flow is substantially larger among outbreaking populations than among non-outbreaking populations, as evidenced by a fourfold to 30-fold difference in F ST values. We discuss the implications for population dynamics and the consequences for management strategies of the observed patterns of genetic variation in L. migratoria populations with contrasting historical outbreak frequency and extent.  相似文献   

5.
An understanding of the patterns of variation within and among populations of tropical trees is essential for devising optimum genetic management strategies for their conservation and sustainable utilization. Here, random amplified polymorphic DNA (RAPD) analysis was used to partition variation within and among 10 populations of the endangered Afromontane medicinal tree, Prunus africana, sampled from five countries across the geographical range of the species (Cameroon, Ethiopia, Kenya, Madagascar and Uganda). Analysis of molecular variance ( AMOVA ) employed 48 RAPD markers and revealed most variation among countries (66%, P < 0.001). However, variation among individuals within populations and among populations within Cameroon and Madagascar was also highly significant. Analysis of population product frequency data indicated Ugandan material to be more similar to populations from Cameroon than populations from Kenya and Ethiopia, while Malagash populations were most distinct. The implications of these findings for determining appropriate approaches for conservation of the species, particularly in Cameroon and Madagascar, are discussed.  相似文献   

6.
The mummichog, Fundulus heteroclitus, exhibits extensive latitudinal clinal variation in a number of physiological and biochemical traits, coupled with phylogeographical patterns at mitochondrial and nuclear DNA loci that suggest a complicated history of spatially variable selection and secondary intergradation. This species continues to serve as a model for understanding local and regional adaptation to variable environments. Resolving the influences of historical processes on the distribution of genetic variation within and among extant populations of F. heteroclitus is crucial to a better understanding of how populations evolve in the context of contemporary environments. In this study, we analysed geographical patterns of genetic variation at eight microsatellite loci among 15 populations of F. heteroclitus distributed throughout the North American range of the species from Nova Scotia to Georgia. Genetic variation in Northern populations was lower than in Southern populations and was strongly correlated with latitude throughout the species range. The most common Northern alleles at all eight loci exhibited concordant latitudinal clinal patterns, and the existence of an abrupt transition zone in allele frequencies between Northern and Southern populations was similar to that observed for mitochondrial DNA and allozyme loci. A significant pattern of isolation by distance was observed both within and between northern and southern regions. This pattern was unexpected, particularly for northern populations, given the recent colonization history of post-Pleistocene habitats, and was inconsistent with either a recent northward population expansion or a geographically restricted northern Pleistocene refugium. The data provided no evidence for recent population bottlenecks, and estimates of historical effective population sizes suggest that post-Pleistocene populations have been large throughout the species distribution. These results suggest that F. heteroclitus was broadly distributed throughout most of its current range during the last glacial event and that the abrupt transition in allele frequencies that separate Northern and Southern populations may reflect regional disequilibrium conditions associated with the post-Pleistocene colonization history of habitats in that region.  相似文献   

7.
Understanding how crop species spread and are introduced to new areas provides insights into the nature of species range expansions. The domesticated species Oryza sativa or Asian rice is one of the key domesticated crop species in the world. The island of Madagascar off the coast of East Africa was one of the last major Old World areas of introduction of rice after the domestication of this crop species and before extensive historical global trade in this crop. Asian rice was introduced in Madagascar from India, the Malay Peninsula and Indonesia approximately 800-1400 years ago. Studies of domestication traits characteristic of the two independently domesticated Asian rice subspecies, indica and tropical japonica, suggest two major waves of migrations into Madagascar. A population genetic analysis of rice in Madagascar using sequence data from 53 gene fragments provided insights into the dynamics of island founder events during the expansion of a crop species' geographic range and introduction to novel agro-ecological environments. We observed a significant decrease in genetic diversity in rice from Madagascar when compared to those in Asia, likely the result of a bottleneck on the island. We also found a high frequency of a unique indica type in Madagascar that shows clear population differentiation from most of the sampled Asian landraces, as well as differential exchange of alleles between Asia and Madagascar populations of the tropical japonica subspecies. Finally, despite partial reproductive isolation between japonica and indica, there was evidence of indica/japonica recombination resulting from their hybridization on the island.  相似文献   

8.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

9.
10.
Genetic variation can be used to determine routes of introduction of non-native species and whether introduced populations lost variation during establishment. The present study sought to determine whether multiple, geographically isolated non-native populations of the green mussel, Perna viridis, were the product of a stepping stone expansion of a single introduction or from multiple independent introductions from the native range. Measurements of genetic variation were compared among five introduced populations and three populations from within the native range. We sequenced 650 bp of the mitochondrial gene cytochrome oxidase I from 280 samples from five introduced populations and another 190 samples from three native populations. Haplotype frequencies of all introduced populations were not significantly different from each other, but virtually all populations differed from samples taken from the native range. Measurements of genetic variation tended to suggest that introduced populations had less variation than most native populations and there was no evidence for admixture in any of the introduced populations. The genetic data and Monte Carlo simulations both provide compelling evidence of a stepping-stone pattern of introduction of P. viridis from the native range to Trinidad, and from Trinidad to other locations in the Caribbean and United States. The lack of genetic variation in introduced populations suggests that the initial introduction was relatively small and the lack of admixture suggests a single original source population.  相似文献   

11.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

12.
13.
Understanding the drivers of successful species invasions is important for conserving native biodiversity and for mitigating the economic impacts of introduced species. However, whole‐genome resolution investigations of the underlying contributions of neutral and adaptive genetic variation in successful introductions are rare. Increased propagule pressure should result in greater neutral genetic variation, while environmental differences should elicit selective pressures on introduced populations, leading to adaptive differentiation. We investigated neutral and adaptive variation among nine introduced brook trout (Salvelinus fontinalis) populations using whole‐genome pooled sequencing. The populations inhabit isolated alpine lakes in western Canada and descend from a common source, with an average of ~19 (range of 7–41) generations since introduction. We found some evidence of bottlenecks without recovery, no strong evidence of purifying selection, and little support that varying propagule pressure or differences in local environments shaped observed neutral genetic variation differences. Putative adaptive loci analysis revealed nonconvergent patterns of adaptive differentiation among lakes with minimal putatively adaptive loci (0.001%–0.15%) that did not correspond with tested environmental variables. Our results suggest that (i) introduction success is not always strongly influenced by genetic load; (ii) observed differentiation among introduced populations can be idiosyncratic, population‐specific, or stochastic; and (iii) conservatively, in some introduced species, colonization barriers may be overcome by support through one aspect of propagule pressure or benign environmental conditions.  相似文献   

14.
Studies examining intraspecific variation in plant species with widespread distributions and disjunct populations have mainly concentrated on temperate species. Here, we determined the genetic structure of a broadly distributed wetland tropical tree, Pterocarpus officinalis (Jacq.), from eight Neotropical populations using amplified length fragment polymorphisms (AFLP). AFLPs proved highly variable with almost half (48%) of the genetic variation at these loci occurring among individuals within populations. Nonetheless, there was a strong geographical pattern in the distribution of AFLP variation within P. officinalis. Caribbean and continental populations fell into two well-defined genetic clusters supported by the presence of a number of unique AFLP bands. Within these two regions, there were also strong genetic differences among populations, caused mainly by frequency differences in AFLP bands, making it difficult to determine the evolutionary relationships among populations. In addition, our analysis of P. officinalis revealed striking differences in the levels of AFLP variation among the eight populations sampled. In general, Caribbean populations had lower genetic diversity than continental populations. Moreover, there was a clear loss in AFLP diversity with distance from the continent among Caribbean populations. The overall genetic pattern within P. officinalis suggests that past colonization history, coupled with genetic drift within local populations, rather than contemporary gene flow are the major forces shaping variation within this species.  相似文献   

15.
Understanding the relative role of different evolutionary forces in shaping the level and distribution of functional genetic diversity among natural populations is a key issue in evolutionary and conservation biology. To do so accurately genetic data must be analysed in conjunction with an unambiguous understanding of the historical processes that have acted upon the populations. Here, we focused on diversity at toll‐like receptor (TLR) loci, which play a key role in the vertebrate innate immune system and, therefore, are expected to be under pathogen‐mediated selection. We assessed TLR variation within and among 13 island populations (grouped into three archipelagos) of Berthelot's pipit, Anthus berthelotii, for which detailed population history has previously been ascertained. We also compared the variation observed with that found in its widespread sister species, the tawny pipit, Anthus campestris. We found strong evidence for positive selection at specific codons in TLR1LA, TLR3 and TLR4. Despite this, we found that at the allele frequency level, demographic history has played the major role in shaping patterns of TLR variation in Berthelot's pipit. Levels of diversity and differentiation within and across archipelagos at all TLR loci corresponded very closely with neutral microsatellite variation and with the severity of the bottlenecks that occurred during colonization. Our study shows that despite the importance of TLRs in combating pathogens, demography can be the main driver of immune gene variation within and across populations, resulting in patterns of functional variation that can persist over evolutionary timescales.  相似文献   

16.
Cyr F  Angers B 《Genetica》2011,139(11-12):1417-1428
Identification of the effects of historical processes on spatial genetic variation is of major importance in landscape genetics, especially in recent systems where the signal of recent isolation is often hardly perceptible. The goal of this study was to assess how differences in colonization patterns could influence spatial genetic variation using two centrarchidae species, the pumpkinseed sunfish (Lepomis gibbosus) and the rock bass (Ambloplites rupestris), from two adjacent drainage systems. The striking difference between the spatial genetic variations of the two species suggests completely opposite patterns of colonization. Rock bass colonized the drainage system from a downstream source, which resulted in a loss of diversity in upstream populations and a strong differentiation between drainage systems. In contrast, the reduction of genetic diversity and increase of differentiation toward downstream populations that were observed among sunfish populations suggest colonization from upstream to downstream. The colonization pattern observed in sunfish, which result in low differentiation between upstream most sites of the two drainages, leads to a false genetic signal of current inter-drainage gene flow. The present study demonstrates through empirical evidence that colonization patterns may impede the capacity to estimate current connectivity.  相似文献   

17.
Anthropogenic-induced change is forcing organisms to shift their distributions and colonize novel habitats at an increasing rate, which leads to complex interactions among evolutionary processes. Coastrange sculpin ( Cottus aleuticus ) have colonized recently deglaciated streams of Glacier Bay in Alaska within the last 220 years. We examined divergence among populations in background matching coloration and tested the hypothesis that observed variation is due to morphological color plasticity. To examine how color-change plasticity has interacted with other evolutionary processes, we also determined the influence of colonization on neutral genetic diversity. We observed clinal variation in substrate-matching fish color along the chronological continuum of streams. Microsatellites provided little evidence of genetic subdivision among sculpin populations. Fish color was significantly correlated to substrate color, but was not correlated to neutral population genetic structure. Furthermore, a laboratory experiment revealed that morphological color plasticity could explain much, but not all, of the observed fish color divergence. Our study demonstrates that sculpin in Glacier Bay have colonized and adapted to recently deglaciated habitat and suggests that color change plasticity has aided in this process. This research, therefore, highlights the important role phenotypic plasticity may play in the adaptation of species to rapid climate change.  相似文献   

18.
Patterns of gene flow and genetic structuring were examined in the canyon treefrog, Hyla arenicolor (Cope). Hierarchical analysis of genetic variation was performed on mitochondrial cytochrome b haplotypes from 323 individuals, representing 32 populations from previously described phylogeographic regions. Results from AMOVA revealed that 60.4-78.9% of the recovered genetic variation was the result of differences in the appointment of genetic variation between subdivisions of the primary phylogeographic regions. In contrast, populations only contained between 13.9 and 30.1% of the observed haplotypic variation. Gene flow estimates based on calculations of phi ST revealed moderate levels of gene flow within phylogeographic regions, but there was no evidence of gene flow between these regions, suggesting that geographical boundaries were probably important in the formation of phylogeographic structure in H. arenicolor. Phylogeographic regions exhibited very different patterns of gene flow. One region showed evidence of recent colonization. Another region exhibited very limited gene flow. Moderate to high estimates of gene flow were obtained for populations from two distinct phylogeographic regions characterized by mesic and xeric environments. Isolation by distance was observed in both regions suggesting that these regions are in genetic equilibrium. Because gene flow is extremely unlikely between the populations in the xeric region, this result is interpreted as historical gene flow. These results indicate that isolation-by-distance effects may still be observed even when population genetic structure and gene flow are the result of historical association.  相似文献   

19.
Styela clava, a solitary ascidian native to the NW Pacific, has become a conspicuous member of fouling communities in NW European waters. As its natural dispersal appears to be limited, the wide distribution of S. clava along coasts within its introduced range may be attributed to secondary spread assisted by human activities. Here, we used six microsatellite loci to examine the genetic diversity and extent of gene flow among S. clava populations in its European introduced range. Samples were collected from 21 populations within Europe (N = 808), 4 populations within the USA and two populations within the native range (Japan). Large variation in genetic diversity was observed among the European populations but were not explained either by the geographic distance from the first introduction area (i.e. Plymouth, UK) nor by the time elapsed since the introduction. No founder effect was observed in the introduced populations, except possibly in Puget Sound (USA). At least two different introductions occurred in Europe, identified as distinct genetic clusters: northern Danish populations (resembling one Japanese population), and the rest of Europe; a sample from Shoreham (England) possibly represents a third introduction. In North America, the population from the Atlantic was genetically similar to the majority of European populations, suggesting a European origin for populations on this seaboard, while populations from the Pacific coast were genetically similar to the same Japanese population as the Danish populations.  相似文献   

20.
Aim To examine the distribution and structure of genetic variation among native Spartina alterniflora and to characterize the evolutionary mechanisms underlying the success of non‐native S. alterniflora. Location Intertidal marshes along the Atlantic, Gulf and Pacific coasts of North America. Methods amova , parsimony analysis, haplotype networks of chloroplast DNA (cpDNA) sequences, neighbour‐joining analysis, Bayesian analysis of population structure, and individual assignment testing were used. Results Low levels of gene flow and geographic patterns of genetic variation were found among native S. alterniflora from the Atlantic and Gulf coasts of North America. The distribution of cpDNA haplotypes indicates that Atlantic coast S. alterniflora are subdivided into ‘northern’ and ‘southern’ groups. Variation observed at microsatellite loci further suggests that mid‐Atlantic S. alterniflora are differentiated from S. alterniflora found in southern Atlantic and New England coastal marshes. Comparisons between native populations on the Atlantic and Gulf coasts and non‐native Pacific coast populations substantiate prior studies demonstrating reciprocal interspecific hybridization in San Francisco Bay. Our results corroborate historical evidence that S. alterniflora was introduced into Willapa Bay from multiple source populations. However, we found that some Willapa Bay S. alterniflora are genetically divergent from putative sources, probably as a result of admixture following secondary contact among previously allopatric native populations. We further recovered evidence in support of models suggesting that S. alterniflora has secondarily spread within Washington State, from Willapa Bay to Grays Harbor. Main conclusions Underlying genetic structure has often been cited as a factor contributing to ecological variation of native S. alterniflora. Patterns of genetic structure within native S. alterniflora may be the result of environmental differences among biogeographical provinces, of migration barriers, or of responses to historical conditions. Interactions among these factors, rather than one single factor, may best explain the distribution of genetic variation among native S. alterniflora. Comprehensive genetic comparisons of native and introduced populations can illustrate how biological invasions may result from dramatically different underlying factors – some of which might otherwise go unrecognized. Demonstrating that invasions can result from several independent or interacting mechanisms is important for improving risk assessment and future forecasting. Further research on S. alterniflora not only may clarify what forces structure native populations, but also may improve the management of non‐native populations by enabling post‐introduction genetic changes and the rapid evolution of life‐history traits to be more successfully exploited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号