首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A gene encoding DNA ligase (lig(Tk)) from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1, has been cloned and sequenced, and its protein product has been characterized. lig(Tk) consists of 1,686 bp, corresponding to a polypeptide of 562 amino acids with a predicted molecular mass of 64,079 Da. Sequence comparison with previously reported DNA ligases and the presence of conserved motifs suggested that Lig(Tk) was an ATP-dependent DNA ligase. Phylogenetic analysis indicated that Lig(Tk) was closely related to the ATP-dependent DNA ligase from Methanobacterium thermoautotrophicum DeltaH, a moderate thermophilic archaeon, along with putative DNA ligases from Euryarchaeota and Crenarchaeota. We expressed lig(Tk) in Escherichia coli and purified the recombinant protein. Recombinant Lig(Tk) was monomeric, as is the case for other DNA ligases. The protein displayed DNA ligase activity in the presence of ATP and Mg(2+). The optimum pH of Lig(Tk) was 8.0, the optimum concentration of Mg(2+), which was indispensable for the enzyme activity, was 14 to 18 mM, and the optimum concentration of K(+) was 10 to 30 mM. Lig(Tk) did not display single-stranded DNA ligase activity. At enzyme concentrations of 200 nM, we observed significant DNA ligase activity even at 100 degrees C. Unexpectedly, Lig(Tk) displayed a relatively small, but significant, DNA ligase activity when NAD(+) was added as the cofactor. Treatment of NAD(+) with hexokinase did not affect this activity, excluding the possibility of contaminant ATP in the NAD(+) solution. This unique cofactor specificity was also supported by the observation of adenylation of Lig(Tk) with NAD(+). This is the first biochemical study of a DNA ligase from a hyperthermophilic archaeon.  相似文献   

2.
天花粉蛋白通过抗原加工提呈调节T细胞免疫应答   总被引:4,自引:0,他引:4  
用三种抗原加工阻断剂预处理抗原提呈细胞(APH)1h后再用天花粉蛋白(Tk)脉冲处理,观察经由APC递呈的Tk对PMA和A23187诱发T细胞增殖的作用。结果表明,这些药物均能不同程度地阻断Tk的抑制效应,以氯喹和Leupeptin的作用更为明显。用胶体金标记Tk(Tk-G),电镜下观察Tk在T细胞和APC内的定位,发现Tk-G仅与APC发生细胞表面粘附,继而内化,先后出现在APC的内体和溶酶体中  相似文献   

3.
We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.  相似文献   

4.
5.
6.
Tk+/- transgenic mice were created using an embryonic stem cell line in which one allele of the endogenous thymidine kinase (Tk) gene was inactivated by targeted homologous recombination. Breeding Tk+/- parents produced viable Tk-/- knockout (KO) mice. Splenic lymphocytes from KO mice were used in reconstruction experiments for determining the conditions necessary for recovering Tk somatic cell mutants from Tk+/- mice. The cloning efficiency of KO lymphocytes was not affected by the toxic thymidine analogues 5-bromo-2'-deoxyuridine (BrdUrd) or trifluorothymidine (TFT), or by BrdUrd in the presence of lymphocytes from Tk+/- animals; however, it was easier to identify clones resistant to BrdUrd than to TFT when Tk+/- cells were present. Tk+/- mice were treated with vehicle or 100 mg/kg of N-ethyl-N-nitrosourea (ENU), and after 4 months, the frequency of Tk mutant lymphocytes was measured by resistance to BrdUrd. The frequency of Tk mutants was 22+/-5.9x10-6 in control animals and 80+/-31x10-6 in treated mice. In comparison, the frequency of Hprt mutant lymphocytes, as measured by resistance to 6-thioguanine, was 2.0+/-1.2x10-6 in control animals and 84+/-28x10-6 in the ENU-treated mice. Analysis of BrdUrd-resistant lymphocyte clones derived from the ENU-treated animals revealed point mutations in the non-targeted Tk allele. These results indicate that the selection of BrdUrd-resistant lymphocytes from Tk+/- mice may be used for assessing in vivo mutation in an endogenous, autosomal gene.  相似文献   

7.
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.  相似文献   

8.
Potassium bromate (KBrO(3)) induces DNA damage and tumors in mice and rats, but is a relatively weak mutagen in microbial assays and the in vitro mammalian Hprt assay. Concern that there may be a human health risk associated with bromate, a disinfectant by-product of ozonation, has accompanied the increasing use of ozonation as an alternative to chlorination for treatment of drinking water. In this study, we have evaluated the mutagenicity of KBrO(3) and sodium bromate (NaBrO(3)) in the Tk gene of mouse lymphoma cells. In contrast to the weak mutagenic activity seen in the previous studies, bromate induced a mutant frequency of over 100 x 10(-6) at 0.6mM with minimal cytotoxicity (70-80% survival) and over 1300 x 10(-6) at 3mM ( approximately 10% survival). The increase in the Tk mutant frequency was primarily due to the induction of small colony of Tk mutants. Loss of heterozygosity (LOH) analysis of 384 mutants from control and 2.7 mM KBrO(3)-treated cells showed that almost all (99%) bromate-induced mutants resulted from LOH, whereas in the control cultures 77% of the Tk mutants were LOH. Our results suggest that bromate is a potent mutagen in the Tk gene of mouse lymphoma cells, and the mechanism of action primarily involves LOH. The ability of the mouse lymphoma assay to detect a wider array of mutational events than the microbial or V79 Hprt assays may account for the potent mutagenic response.  相似文献   

9.
Wang J  Heflich RH  Moore MM 《Mutation research》2007,626(1-2):185-190
The mouse lymphoma assay (MLA) is the most widely used in vitro mammalian gene mutation assay. It detects various mutation events involving the thymidine kinase (Tk) gene in L5178Y/Tk+/- -3.7.2C mouse lymphoma cells. Mutants are detected using a thymidine analogue that arrests the growth of cells containing a functional Tk gene. However, there are a number of potential test chemicals that are thymidine analogues, and there is a problem when using the MLA to evaluate the mutagenicity of these chemicals. Thymidine analogues are activated by Tk before eliciting their toxicity. Therefore, any pre-existing Tk-/- mutants may avoid the toxicity of the test chemical and obtain a growth advantage over the Tk+/- cells, increasing the Tk mutant frequency (MF) in the culture via a selection mechanism. This potential mutant selection effect needs to be distinguished from de novo mutant induction in order to properly evaluate the mutagenicity of these chemicals. Here we describe a simple MLA study design that can differentiate between the selection of pre-existing mutants and de novo mutant induction. Trifluorothymidine (TFT), a thymidine analogue and the selection agent normally used in the MLA, and 4-nitroquinoline-1-oxide (4-NQO), a potent mutagen, were used to treat cells from two different Tk+/- mouse lymphoma cell cultures with different background MFs (approximately 112 and 305x10(-6)). Both agents significantly increased the Tk MFs in both the normal and high background cultures (p<0.01). In 4-NQO-treated cultures, the induced MFs (MF of treated culture-MF of control) for the cultures with different background MFs were about the same (p>0.1), while in TFT-treated cultures, they were significantly different (p<0.01). In TFT-treated cultures, the fold-increases of MF (MF of treated culture/MF of control) for the cultures with different background MFs were about the same (p>0.1), while in 4-NQO-treated cultures, they were significantly different (p<0.01). This study confirms that, when de novo mutations are induced, the induced MF is the same for cultures with normal and artificially high background MFs. In situations where the increase in MF is due solely to selection of pre-existing mutants, the "induced" MF will be a multiple of the background MF and the magnitude of the increase of the induced MF will depend upon the magnitude of the background MF. Our results demonstrate that it is possible, using this experimental design, to distinguish between chemicals acting primarily via the selection of pre-existing Tk mutants and those inducing de novo mutants in the MLA.  相似文献   

10.
It has been recently reported that the pR plasmid enhances the UV survival in E.coli c600. In order to test whether this function may be expressed also in mammalian cells, LTA (tk- aprt-) mouse cells were cotransformed with pR plasmid DNA and ptk1 plasmid as selectable marker. Tk+ transformants were analyzed for their UV survival and for the presence of pR DNA sequences by blot-hybridization. The results show a correlation between the enhanced UV survival and presence of pR DNA sequences in cotransformed LTA mouse cells.  相似文献   

11.
The present study aimed to establish a novel efficient nonviral strategy for suicide gene transfer in hepatocellular carcinoma (HCC) in vivo. We employed branched polyethylenimine (PEI) and combined it with Epstein-Barr virus (EBV)-based plasmid vectors. The HCC cells transfected with an EBV-based plasmid carrying the herpes simplex virus-1 thymidine kinase (HSV-1 Tk) gene (pSES.Tk) showed up to 30-fold higher susceptibilities to ganciclovir (GCV) than those transfected with a conventional plasmid vector carrying the HSV-1 Tk gene (pS.Tk). The therapeutic effect in vivo was tested by intratumoral injection of the plasmids into HuH-7 hepatomas transplanted into C.B-17 scid/scid mutant (SCID) mice and subsequent GCV administrations. Treatment with pSES.Tk, but not pS.Tk, markedly suppressed growth of hepatomas in vivo, resulting in a significantly prolonged survival period of the mice. These findings suggest that PEI-mediated gene transfer system can confer efficient expression of the suicide gene in HCC cells in vivo by using EBV-based plasmid vectors.  相似文献   

12.
Mother-to-child transmission of the human immunodeficiency virus (HIV) is reduced by perinatal treatment with the antiretroviral nucleoside analogue 3'-azido-3'-deoxythymidine (AZT, zidovudine). AZT, however, is genotoxic and carcinogenic in mice when administered either transplacentally or neonatally, suggesting a possible cancer risk for children later in life. In a previous study we found that treating B6C3F1/Tk(+/-) mice on postnatal days 1 through 8 with intraperitoneal injections of 200 mg AZT per kg body weight per day significantly increased spleen lymphocyte mutant frequencies in the autosomal Tk gene. Allele-specific PCR of Tk mutants from treated mice indicated that 61% had lost the Tk(+) allele (loss of heterozygosity; LOH), compared with 35% of Tk mutants from control mice, a difference that was significant. In the present study, Tk mutant lymphocyte clones were analyzed further using polymorphic microsatellite markers that flank the Tk gene along the length of mouse chromosome 11. The analysis indicated that allele-loss mutations in control mice were due to either total chromosome loss, mitotic recombination, or both. The pattern of marker loss in mutants from AZT-treated mice differed significantly from the control mice and was consistent with chromosome loss, mitotic recombination, interstitial deletion, gene conversion, and an unusual discontinuous LOH. The results indicate that AZT induced a unique pattern of mutations in the Tk gene of mice and that the major mechanisms of mutation by AZT involved deletion and recombination.  相似文献   

13.
Tk‐subtilisin (Gly70‐Gly398) is a subtilisin homolog from Thermococcus kodakarensis. Active Tk‐subtilisin is produced from its inactive precursor, Pro‐Tk‐subtilisin (Gly1‐Gly398), by autoprocessing and degradation of the propeptide (Tk‐propeptide, Gly1‐Leu69). This activation process is extremely slow at moderate temperatures owing to high stability of Tk‐propeptide. Tk‐propeptide is stabilized by the hydrophobic core. To examine whether a single nonpolar‐to‐polar amino acid substitution at this core affects the activation rate of Pro‐Tk‐subtilisin, the Pro‐Tk‐subtilisin derivative with the Phe17→His mutation (Pro‐F17H), Tk‐propeptide derivative with the same mutation (F17H‐propeptide), and two active‐site mutants of Pro‐F17H (Pro‐F17H/S324A and Pro‐F17H/S324C) were constructed. The crystal structure of Pro‐F17H/S324A was nearly identical to that of Pro‐S324A, indicating that the mutation does not affect the structure of Pro‐Tk‐subtilisin. The refolding rate of Pro‐F17H/S324A and autoprocessing rate of Pro‐F17H/S324C were also nearly identical to those of their parent proteins (Pro‐S324A and Pro‐S324C). However, the activation rate of Pro‐F17H greatly increased when compared with that of Pro‐Tk‐subtilisin, such that Pro‐F17H is efficiently activated even at 40°C. The far‐UV circular dichroism spectrum of F17H‐propeptide did not exhibit a broad trough at 205–230 nm, which is observed in the spectrum of Tk‐propeptide. F17H‐propeptide is more susceptible to chymotryptic degradation than Tk‐propeptide. These results suggest that F17H‐propeptide is unfolded in an isolated form and is therefore rapidly degraded by Tk‐subtilisin. Thus, destabilization of the hydrophobic core of Tk‐propeptide by a nonpolar‐to‐polar amino acid substitution is an effective way to increase the activation rate of Pro‐Tk‐subtilisin.  相似文献   

14.
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues.  相似文献   

15.
Tk transformed red blood cells were obtained in vitro by treatment with supernatants from cultures of three different Bacteroides fragilis strains. The reactions of these cells with AB sera show that Tk is different from other known types of polyagglutination. Beside the already known modifications of A B H antigens, we found that Tk activated cells have an important modification of I and i antigens: both are reduced, and can even be completely destroyed.  相似文献   

16.
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.  相似文献   

17.
Pacliatxel is a taxol-based chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are prescribed to attenuate neuropathies, no optimal treatment is available. Thus, in our study, we analyzed whether SH003 and its sub-components could alleviate paclitaxel-induced neuropathic pain. Multiple paclitaxel injections (cumulative dose 8 mg/kg, i.p.) induced cold and mechanical allodynia from day 10 to day 21 after the first injection in mice. Oral administration of SH003, an herbal mixture extract of Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz (Tk), dose-dependently attenuated both allodynia. However, when administered separately only Tk decreased both allodynia. The effect of Tk was shown to be mediated by the spinal noradrenergic system as intrathecal pretreatment with α1- and α2-adrenergic-receptor antagonists (prazosin and idazoxan), but not 5-HT1/2, and 5-HT3-receptor antagonists (methysergide and MDL-72222) blocked the effect of Tk. The spinal noradrenaline levels were also upregulated. Among the phytochemicals of Tk, cucurbitacin D was shown to play a major role, as 0.025 mg/kg (i.p.) of cucurbitacin D alleviated allodynia similar to 500 mg/kg of SH003. These results suggest that Tk should be considered when treating paclitaxel-induced neuropathic pain.  相似文献   

18.
The hyperthermophilic archaeon Thermococcus kodakaraensis harbors a type III ribulose 1,5-bisphosphate carboxylase/oxygenase (Rbc(Tk)). It has previously been shown that Rbc(Tk) is capable of supporting photoautotrophic and photoheterotrophic growth in a mesophilic host cell, Rhodopseudomonas palustris Delta3, whose three native Rubisco genes had been disrupted. Here, we have examined the enzymatic properties of Rbc(Tk) at 25 degrees C and have constructed mutant proteins in order to enhance its performance in mesophilic host cells. Initial sites for mutagenesis were selected by focusing on sequence differences in the loop 6 and alpha-helix 6 regions among Rbc(Tk) and the enzymes from spinach (mutant proteins SP1 to SP7), Galdieria partita (GP1 and GP2), and Rhodospirillum rubrum (RR1). Loop 6 of Rbc(Tk) is one residue longer than those found in the spinach and G. partita enzymes, and replacing Rbc(Tk) loop 6 with these regions led to dramatic decreases in activity. Six mutant enzymes retaining significant levels of Rubisco activity were selected, and their genes were introduced into R. palustris Delta3. Cells harboring mutant protein SP6 displayed a 31% increase in the specific growth rate under photoheterotrophic conditions compared to cells harboring wild-type Rbc(Tk). SP6 corresponds to a complete substitution of the original alpha-helix 6 of Rbc(Tk) with that of the spinach enzyme. Compared to wild-type Rbc(Tk), the purified SP6 mutant protein exhibited a 30% increase in turnover number (k(cat)) of the carboxylase activity and a 17% increase in the k(cat)/K(m) value. Based on these results, seven further mutant proteins were designed and examined. The results confirmed the importance of the length of loop 6 in Rbc(Tk) and also led to the identification of specific residue changes that resulted in an increase in the turnover number of Rbc(Tk) at ambient temperatures.  相似文献   

19.
Methionine sulfoxide reductase (Msr) catalyzes the thioredoxin-dependent reduction and repair of methionine sulfoxide (MetO). Although Msr genes are not present in most hyperthermophile genomes, an Msr homolog encoding an MsrA-MsrB fusion protein (MsrAB(Tk)) was present on the genome of the hyperthermophilic archaeon Thermococcus kodakaraensis. Recombinant proteins corresponding to MsrAB(Tk) and the individual domains (MsrA(Tk) and MsrB(Tk)) were produced, purified, and biochemically examined. MsrA(Tk) and MsrB(Tk) displayed strict substrate selectivity for Met-S-O and Met-R-O, respectively. MsrAB(Tk), and in particular the MsrB domain of this protein, displayed an intriguing behavior for an enzyme from a hyperthermophile. While MsrAB(Tk) was relatively stable at temperatures up to 80 degrees C (with a half-life of approximately 30 min at 80 degrees C), a 75% decrease in activity was observed after 2.5 min at 85 degrees C, the optimal growth temperature of this archaeon. Moreover, maximal levels of MsrB activity of MsrAB(Tk) were observed at the strikingly low temperature of 30 degrees C, which also was observed for MsrB(Tk). Consistent with the low-temperature-specific biochemical properties of MsrAB(Tk), the presence of the protein was greater in T. kodakaraensis cells grown at suboptimal temperatures (60 to 70 degrees C) and could not be detected at 80 to 90 degrees C. We found that the amount of intracellular MsrAB(Tk) protein increased with exposure to higher dissolved oxygen levels, but only at suboptimal growth temperatures. While measuring background rates of the Msr enzyme reactions, we observed significant levels of MetO reduction at high temperatures without enzyme. The occurrence of nonenzymatic MetO reduction at high temperatures may explain the specific absence of Msr homologs in most hyperthermophiles. Together with the fact that the presence of Msr in T. kodakaraensis is exceptional among the hyperthermophiles, the enzyme may represent a novel strategy for this organism to deal with low-temperature environments in which the dissolved oxygen concentrations increase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号