首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibilities for studying minimal residual disease (MRD) in human acute myelocytic leukemia (AML) are limited. Animal models are, therefore, indispensable for gaining insight into the characteristics of leukemia growth during the MRD phase. Studies were done to compare AML to acute myelocytic leukemia in the Brown Norway rat (BNML). The BNML model exhibited a high degree of similarity to human AML with regard to its general growth characteristics, its cell kinetic parameters, its biophysical parameters and its response to chemotherapy. This implied that studies of the BNML model have predictive value for clinical application. In the BNML model a number of independent methods are available to quantify the number of leukemic cells, i.e., indirectly by means of various bioassays or directly by using monoclonal antibody labeling and flow cytometry. Studies of the BNML model in relation to the understanding of various aspects of MRD in leukemia are discussed in this concise review. Insight has been obtained with regard to the kinetics of MRD; the efficacy of certain treatment modalities, e.g., cytostatic drug treatment with or without total body irradiation to eradicate MRD; the efficacy of various methods for eliminating residual leukemic cells from autologous marrow grafts; the emergence of drug resistance during MRD; and the progression of residual disease during the remission phase ultimately leading to a relapse and the implications of these observations for staging leukemia patients during the phase of MRD.  相似文献   

2.
Multi-parameter flow cytometry (MPFC) was used to detect minimal residual disease (MRD) following bone marrow transplantation (BMT) in 21 patients. Bone marrow (BM) was analyzed pre-transplant and 3–4 months post-BMT while the patients were in clinical and morphological remission. MRD was detected by identifying cells with aberrant antigen expression and/or leukemia-associated phenotype (LAP) using MPFC. Prior to BMT, 8 out of 21 patients exhibited normal antigen expression based on normal BM samples while 13 BM aspirates had abnormal MPFC. Pre-BMT MPFC was abnormal in all 10 patients who were not in complete remission (CR) (>5% blasts in BM) as well as 3 patients acute lymphoblastic leukemia (ALL) who were in CR. In BM from ALL patients, an abnormal uniform B cell population was observed however antigen expression patterns varied greatly between patients. BM from acute myeloblastic leukemia (AML) patients showed an abnormal distribution of CD34+ cells. In addition, a correlation was observed between pre-BMT cytogenetics and MPFC. Only 2 out of 8 (25%) patients with normal MPFC pre-autologous bone marrow transplantation (ABMT) relapsed (AML), while 6 out of 13 (46%) patients with abnormal pre-BMT MPFC relapsed including 2 out of 3 patients who were transplanted in clinical CR. Pre-BMT MPFC may thus be an effective tool for detection of MRD by detection of a pre-transplant MPFC abnormality.  相似文献   

3.
4.
5.
Emil J. Freireich 《CMAJ》1967,96(25):1605-1610
The therapy of acute leukemia has improved rapidly in the last two decades. Using available therapeutic agents, complete clinical and hematological remission can be achieved regularly in children with acute lymphocytic leukemia. The choice of chemotherapeutic agent, management of complications of hemorrhage and infection, and recognition of prognostic factors are important for the induction of a hematological remission. While patients in complete hematological remission are free of evidence of disease they still have residual leukemic cells, but in our present state of knowledge and with available techniques, we are unable to detect these. For this reason it is important to treat patients while in remission. The importance of dosage schedule for remission maintenance chemotherapy is stressed.In patients studied to date, regardless of the treatment used, the disease has recurred eventually. Available therapeutic agents are highly effective and highly selective, but they still fall short of providing ideal control of the disease. The continuing search for new chemotherapeutic agents is aided by the knowledge gained and techniques developed with current agents.  相似文献   

6.
As cure rates in childhood acute lymphoblastic leukemia reach 80%, emphasis is increasingly placed on the accurate identification of drug-resistant cases, the elucidation of the mechanisms involved in drug resistance and the development of new therapeutic strategies targeted toward the pivotal molecular lesions. Pharmacodynamic and pharmacogenomic studies have provided rational criteria for individualizing therapy to enhance efficacy and reduce acute toxicity and late sequelae. Currently, assessment of the early response to treatment by measurement of minimal residual disease (MRD) is the most powerful independent prognostic indicator. MRD is affected by both the drug sensitivity of leukemic cells and the pharmacodynamic and pharmacogenetic properties of the host cells. Rapid advances in biotechnology and bioinformatics should ultimately facilitate the development of molecular diagnostic assays that can be used to optimize antileukemic therapy and elucidate the mechanisms of leukemogenesis. In the interim, prospective clinical trials have provided valuable clues that are further increasing the cure rate of childhood acute lymphoblastic leukemia.  相似文献   

7.
Bone-marrow minimal residual disease (MRD) causes relapse after chemotherapy in patients with acute myelogenous leukemia (AML). We postulate that the drug resistance is induced by the attachment of very late antigen (VLA)-4 on leukemic cells to fibronectin on bone-marrow stromal cells. We found that VLA-4-positive cells acquired resistance to anoikis (loss of anchorage) or drug-induced apoptosis through the phosphatidylinositol-3-kinase (PI-3K)/AKT/Bcl-2 signaling pathway, which is activated by the interaction of VLA-4 and fibronectin. This resistance was negated by VLA-4-specific antibodies. In a mouse model of MRD, we achieved a 100% survival rate by combining VLA-4-specific antibodies and cytosine arabinoside (AraC), whereas AraC alone prolonged survival only slightly. In addition, overall survival at 5 years was 100% for 10 VLA-4-negative patients and 44.4% for 15 VLA-4-positive patients. Thus, the interaction between VLA-4 on leukemic cells and fibronectin on stromal cells may be crucial in bone marrow MRD and AML prognosis.  相似文献   

8.
Normal and malignant myeloid cells express a highly immunogenic oligosaccharide, lacto-n-fucopentaose-III (LNF-III), that has been identified by numerous monoclonal antibodies (MoAb). We have been interested in the use of a particular monoclonal antibody to LNF-III, PM-81, in the treatment of patients with acute myelogenous leukemia using the antibody to treat bone marrow in vitro. Following in vitro treatment of bone marrow with PM-81 and another MoAb, AML-2-23, the remaining cells are used as an autograft in a patient treated with high-dose chemotherapy and radiotherapy. In order to enhance the ability of the MoAb to lyse leukemic cells in the remission bone marrow, we have explored the effect of neuraminidase treatment on leukemia cells. In this paper we describe that myeloid leukemia cells expressing low levels of LNF-III by immunofluorescence can be shown to have high levels of LNF-III after neuraminidase treatment. In addition, we show that normal bone marrow progenitor cells do not have cryptic LNF-III antigen, thus allowing the application of this finding to the clinical setting. Moreover, we have shown that leukemia colony-forming cells from one patient with acute myelogenous leukemia express cryptic LNF-III and that after exposure to neuraminidase there was an increased ability of PM-81 in the presence of complement to eliminate these colony forming cells. These data indicate that the LNF-III moiety is almost universally expressed on myeloid leukemia cells and their progenitors but not expressed on normal progenitors. Thus, it may be possible to enhance leukemia cell kill in vitro by neuraminidase treatment of bone marrow.  相似文献   

9.
Studies have been carried out on the levels of serum and urine colony stimulating activity (CSA) and peripheral blood and bone marrow colony forming cell numbers in children with acute lymphocytic leukemia (ALL) during various phases of their disease. These studies have suggested that serum and urine levels of colony stimulating factor are reduced during the inital or relapse phase of the disease compared to levels found during remission. It has also been found that the number of bone marrow colony forming cells is reduced in relapse or before treatment and elevated during remission while the number of peripheral blood colony forming cells is increased during relapse or before treatment and normal during remission. It has also been shown that mixing of serum or leukemic cells with normal human bone marrow cells inhibits colony formation.  相似文献   

10.
Cytogenetic abnormalities are important diagnostic and prognostic criteria for hematologic malignancies. Karyotyping and fluorescence in situ hybridization (FISH) are the conventional methods by which these abnormalities are detected. The sensitivity of these microscopy-based methods is limited by the abundance of the abnormal cells in the samples and therefore these analyses are commonly not applicable to minimal residual disease (MRD) stages. A flow cytometry-based imaging approach was developed to detect chromosomal abnormalities following FISH in suspension (FISH-IS), which enables the automated analysis of several log-magnitude higher number of cells compared with the microscopy-based approaches. This study demonstrates the applicability of FISH-IS for detecting numerical chromosome aberrations, establishes accuracy, and sensitivity of detection compared with conventional FISH, and feasibility to study procured clinical samples of acute myeloid leukemia (AML). Male and female healthy donor peripheral blood mononuclear cells hybridized with combinations of chromosome enumeration probes (CEP) 8, X, and Y served as models for disomy, monosomy, and trisomy. The sensitivity of detection of monosomies and trisomies amongst 20,000 analyzed cells was determined to be 1% with a high level of precision. A high correlation (R(2) = 0.99) with conventional FISH analysis was found based on the parallel analysis of diagnostic samples procured from 10 AML patients with trisomy 8 (+8). Additionally, FISH-IS analysis of samples procured at the time of clinical remission demonstrated the presence of residual +8 cells indicating that this approach may be used to detect MRD and associated chromosomal defects. ? 2012 International Society for Advancement of Cytometry.  相似文献   

11.
The role of stem cell transplantation in the treatment of leukemia and myelodysplasia (MDS) in children has changed over the past decade. In pediatric acute lymphoblastic leukemia (ALL), the overall cure-rate is high with conventional chemotherapy. However, selected patients with a high-risk of relapse are often treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first remission (CR1). Patients with a bone-marrow relapse who attain a second remission frequently receive HSCT. High minimal residual disease (MRD) levels directly prior to HSCT determines the relapse risk. Therefore, MRD positive patients are eligible for more experimental approaches such as intensified or experimental chemotherapy pre-HSCT, as well as immune modulation post-HSCT. In pediatric acute myeloid leukemia (AML) the role of allo-HSCT in CR1 is declining, due to better outcome with modern multi-agent chemotherapy. In relapsed AML patients, allo-HSCT still seems indispensable. Targeted therapy may change the role of HSCT, in particular in chronic myeloid leukemia, where the role of allografting is changing in the imatinib era. In MDS, patients are usually transplanted immediately without prior cytoreduction. New developments in HSCT, such as the role of alternative conditioning regimens, and innovative stem cell sources such as peripheral blood and cord blood, will also be addressed.  相似文献   

12.
13.
Therapeutic conditions for acute leukemia (AL) mainly rely on diagnosis and detection of minimal residual disease (MRD). However, no serum biomarker has been available for clinicians to make diagnosis of AL and assessment of MRD. In this study, we performed bead fractionation/MALDI‐TOF‐MS analysis on sera from patients with AL. Support vector machine algorithm was used to obtain diagnostic model that discriminated proteomic spectra of patients with AL from that of controls. Twenty‐six features with p<0.00001 had optimal discriminatory performance, with 97% sensitivity and 100% specificity. Statistical analysis revealed that two peptides with m/z 1778 and 1865 were gradually decreased in their relative intensities with increase of remission degree. Moreover, the peptide with m/z 1865 was also found to be correlated with AL types. With FT‐ICR‐MS detection, both the peptides were identified as fragments of complement C3f. Linear regression analysis showed that the combined use of them could discriminate PML/RARα positive M3 from molecular remission M3. Two fragments of complement C3f were significantly correlated with MRD levels and could be used for clinical practice in MRD assessment.  相似文献   

14.
Minimal residual disease (MRD) has emerged as a major prognostic factor for monitoring patients with B-lineage acute lymphoblastic leukemia (B-ALL). The quantification of MRD by flow cytometry (FC) is based on the identification of a leukemia-associated phenotype (LAP). Because phenotypic switch is common during treatment, multiple LAPs must be available and used for MRD detection over time. We evaluated the potential usefulness of CD304 as a new marker for monitoring MRD. CD304 was expressed in 48% of B-ALL (24/50) with discriminative fluorescence intensity compared with CD304-negative normal B-cell precursors (n = 15). The sensitivity of CD304-based MRD detection reached 10(-4), as with some of established LAPs. The stability of CD304 expression evaluated during therapy and at relapse confirms the usefulness of this marker for MRD quantification. Finally, CD304 was repeatedly expressed in patients with TEL-AML1 gene rearrangement, which warrants further investigation on its potential relevance as a prognosis marker or therapeutic target.  相似文献   

15.
Detection of minimal residual disease (MRD) in childhood leukemia is not possible by cytomorphology or Southern blotting due to their low sensitivity. On the other hand, the use of DNA markers and PCR amplification is helpful in a smaller proportion of leukemia cases (20-30%). Since childhood leukemia is characterized by WT1 gene expression in the majority of cases,monitoring of WT1 expression in the peripheral blood was suggested to be a method of choice to detect MRD. We have studied 22 newly diagnosed childhood acute leukemias and 17 cases in remission. As controls, 19 patients with non-leukemic diseases were included. The majority of our acute leukemia cases (80%) were proved to be WT1 expressors using a highly sensitive nested PCR technique. Ten WT1 + cases have been monitored for a year throughout the inicial therapy phase, using peripheral blood tests. We observed that in 20% of the follow-up cases MRD was suggested which was not detectable by any other methods. It is our intention to introduce this new molecular technique into the clinical management of childhood acute leukemia.  相似文献   

16.
Recent mathematical models have been developed to study the dynamics of chronic myelogenous leukemia (CML) under imatinib treatment. None of these models incorporates the anti-leukemia immune response. Recent experimental data show that imatinib treatment may promote the development of anti-leukemia immune responses as patients enter remission. Using these experimental data we develop a mathematical model to gain insights into the dynamics and potential impact of the resulting anti-leukemia immune response on CML. We model the immune response using a system of delay differential equations, where the delay term accounts for the duration of cell division. The mathematical model suggests that anti-leukemia T cell responses may play a critical role in maintaining CML patients in remission under imatinib therapy. Furthermore, it proposes a novel concept of an “optimal load zone” for leukemic cells in which the anti-leukemia immune response is most effective. Imatinib therapy may drive leukemic cell populations to enter and fall below this optimal load zone too rapidly to sustain the anti-leukemia T cell response. As a potential therapeutic strategy, the model shows that vaccination approaches in combination with imatinib therapy may optimally sustain the anti-leukemia T cell response to potentially eradicate residual leukemic cells for a durable cure of CML. The approach presented in this paper accounts for the role of the anti-leukemia specific immune response in the dynamics of CML. By combining experimental data and mathematical models, we demonstrate that persistence of anti-leukemia T cells even at low levels seems to prevent the leukemia from relapsing (for at least 50 months). As a consequence, we hypothesize that anti-leukemia T cell responses may help maintain remission under imatinib therapy. The mathematical model together with the new experimental data imply that there may be a feasible, low-risk, clinical approach to enhancing the effects of imatinib treatment.  相似文献   

17.
目的:探讨急性髓系白血病(AML)在治疗过程中应用多参数流式细胞术(MFC)动态微小残留病灶(MRD)的意义。方法:选择2015年1月至2017年2月在我院血液科收治的60例AML患者,在诱导治疗第8天,第21天,每次巩固治疗前1天,结束化疗随访过程中,检测骨髓形态学变化和应用MFC监测患者骨髓MRD,并动态随访。定义未发现异常表型细胞(MRD10~(-4))为阴性,其余为阳性。结果:平均随访时间为11个月(3到16个月),早期MRD(诱导化疗第8天)阴性的患者占58.33%,MRD阳性的患者占41.67%。MRD阴性的患者在诱导治疗接受第21天100%达到CR,MRD阳性的患者80%达到CR。第一次巩固治疗结束后,MRD阴性的患者预后明显较MRD阳性的患者好。结论:动态监测MRD对预测AML患者对治疗的反应和预测复发有重要意义。  相似文献   

18.
19.
A detailed analysis of normal myeloid differentiation was performed using mutlidimensional flow cytometry. Based on two light scattering and three color immunofluorescence signals, the normal maturation pathways of both the monocyte and neutrophil lineages could be elucidated. Gradual changes of light scattering properties and cell surface antigen expression defined the pathways of each of the lineages. The consistency of the location of these lineage specific pathways found in normal individuals provided the basis for the discrimination between normal and leukemic cells in acute myeloid leukemia (ANLL). The position of leukemic cells in patients with ANLL in a five-dimensional space was compared with the position of the maturation tracks in normal individuals. The expression of normal antigens on leukemic cells provided the tools to: (1) distinguish normal from clonal populations of leukemic cells in all 15 patients; (2) detect a lineage predominance, either monocytic or neutrophilic, in all 15 patients; (3) detect maturation heterogeneity in all 15 patients. Although maturation pathways of the monocytic and the neutrophilic lineages were analogous to the normal patterns they were distinct in several ways. The expression of normal antigens on leukemic cells may provide the tools to: (1) obtain a new frame-work for classification of leukemia based on the ability to quantify the aberrant antigen expression and to define a 'distance from normal' based on the characteristics studied (the maturation heterogeneity of the leukemic cells also can be correlated with the clinical outcome of the patients); (2) detect minimal residual disease using the difference in locations of the leukemic cells in the multidimensional space from the normal maturation pathways (3) monitor relapse and changes in phenotypes which may accompany chemotherapy, suggesting the appearance of variant or new clones.  相似文献   

20.
Somatically acquired genetic alterations play an important role in the pathogenesis of acute lymphoblastic leukemia. The molecular analysis of these alterations has increased our understanding of the mechanisms of leukemogenesis. In addition, this information has led to improvements in our abilities to predict treatment response and to deliver the optimal intensity of treatment to individual patients. For example, the prognosis for patients with acute lymphoblastic leukemia whose leukemic cells express the TEL-AML1 fusion is favorable when they are treated on modem chemotherapy protocols, whereas patients whose leukemic lymphoblasts contain the MLL-AF4 or the BCR-ABL fusion sometimes require allogeneic hematopoietic stem cell transplantation for cure. Molecular techniques are also used to detect minimal residual disease and genetic polymorphisms that are important in optimizing drug therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号