首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achromobacter xylosoxidans is known to utilize d-glucose via the modified Entner-Doudoroff pathway. Although d-gluconate dehydratase produced from this bacterium was purified and partially characterized previously, a gene that encodes this enzyme has not yet been identified. To obtain protein information on bacterial d-gluconate dehydratase, we partially purified d-gluconate dehydratase in A. xylosoxidans and investigated its biochemical properties. Two degenerate primers were designed based on the N-terminal amino acid sequence of the partially purified d-gluconate dehydratase. Through PCR performed using degenerate primers, a 1,782-bp DNA sequence encoding the A. xylosoxidans d-gluconate dehydratase (gnaD) was obtained. The deduced amino acid sequence of A. xylosoxidans gnaD showed strong similarity with that of proteins belonging to the dihydroxy-acid dehydratase/phosphogluconate dehydratase family (COG0129). This is in contrast to the archaeal d-gluconate dehydratase, which belongs to the enolase superfamily (COG4948). The phylogenetic tree showed that A. xylosoxidans d-gluconate dehydratase is closer to the 6-phosphogluconate dehydratase than the dihydroxy-acid dehydratase. Interestingly, a clade containing A. xylosoxidans enzyme was clustered with proteins annotated as a second and a third dihydroxy-acid dehydratase in the genomes of Clostridium acetobutylicum (Cac_ilvD2) and Streptomyces ceolicolor (Sco_ilvD2, Sco_ilvD3), indicating that the function of these enzymes is the dehydration of d-gluconate.  相似文献   

2.
Radiolabeled amino acids (l-U[C14]alanine,d-U[C14]alanine,l-U[C14]threonine, andl-U[C14]phenylalanine) were exponentially incorporated into the trichloroacetic acid (TCA)-insoluble material (whole cells) ofMycobacterium avium during the first 30–60 min of labeling. Bacteria labeled for 48 h were extracted with chloroform-methanol (21 vol/vol). The thin layer chromatography (TLC) analysis of native lipids showed that mycoside C was labeled by the amino acids used.d-cycloserine (d-CS) and other amino acid analogs were examined as potential inhibitors of mycoside C biosynthesis. It was found thatd-CS caused about 27% inhibition, whereaso-,p-, andm-fluoro-dl-phenylalanine (Fl-phe) caused 80%–90% inhibition of the mycoside C biosynthesis. Judging from the data on inhibition experiments, it was concluded that the mycoside C biosynthesis started from the fatty acyl end and proceeded by the stepwise addition ofd-phenylalanine,d-allo-threonine, andd-alanine. Thed-alanyl-d-alanine peptidoglycan intermediate did not seem to serve as a donor ofd-alanine for mycoside C biosynthesis. Ultrastructural observation of the bacteria treated withd-CS showed only partial alteration of the outer wall layer, whereasm-Fl-phe treatment caused profound alterations. Successive transfers of the bacteria in growth medium supplemented withm-Fl-phe resulted in extensive disorganization of the outer layer.  相似文献   

3.
Biofilms of sulfate reducing bacteria (SRB) are often responsible for Microbiologically Influenced Corrosion (MIC) that is a major problem in the oil and gas industry as well as water utilities and other industries. This work was inspired by recent reports that some d-amino acids may be useful in the control of microbial biofilms. A d-amino acid mixture with equimolar d-tyrosine, d-methionine, d-tryptophan and d-leucine was tested in this work for their enhancement of a biocide cocktail containing tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and ethylenediamine-N,N’-disuccinic acid (EDDS). Desulfovibrio vulgaris (ATCC 7757) was cultured in ATCC 1249 medium. Its biofilm was grown on C1018 carbon steel coupons. Experimental results indicated that the triple biocide cocktail consisting of 30 ppm THPS, 500 ppm EDDS and 6.6 ppm d-amino acid mixture (with equimolar d-tyrosine, d-methionine, d-tryptophan and d-leucine) was far more effective than THPS and EDDS alone and their binary combination. The triple biocide cocktail effectively prevented SRB biofilm establishment and removed the established SRB biofilm. The d-amino acid mixture alone did not show significant effects in the two tasks even at 660 ppm.  相似文献   

4.
d-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert d-galactose into the valuable d-tagatose using l-arabinose isomerase (l-AI). In this study, a thermophilic strain possessing l-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding l-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). l-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more d-tagatose from d-galactose by raising the reaction temperatures and adding borate. A 60% conversion of d-galactose to d-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k cat /K m) for d-galactose with borate was 9.47 mM−1 min−1, twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for d-galactose, suggesting its great potential for producing d-tagatose.  相似文献   

5.
Summary A gene library with DNA of Staphylococcus hyicus subsp. hyicus was established in S. carnosus by using the plasmid vector pCT20. Two clones of S. carnosus were isolated which were able to ferment d-ribose. The two hybrid plasmids (pRib 1) and (pRib 2) were isolated and characterized. They contained inserted DNA fragments of S. hyicus subsp. hyicus with sizes of 10.2 and 8.2 kb, respectively. d-Ribose uptake and enzyme activities were studied. All strains tested [S. hyicus subsp. hyicus, S. carnosus (wild type) and the two S. carnosus clones] possessed an inducible uptake system for d-ribose. S. hyicus subsp. hyicus possessed in addition enzyme activities of d-ribokinase and d-ribose-5-P isomerase. None of these enzyme activities could be detected in S. carnosus (wildtype). Only in the S. carnosus clones containing (pRib 1) or (pRib 2) could a d-ribokinase activity be demonstrated, indicating that the gene for d-ribokinase of S. hyicus subsp. hyicus was cloned in S. carnosus.Abbreviations bp base pairs - C-TLC cellulose-thin layer chromoatography - kb kilo base pairs - pRib 1 and 2 ribokinase activity conferring hybridplasmids - MBq megabequerel - wt wild type  相似文献   

6.
Growth ofSelenomonas ruminantium HD4 in medium that contained 21mm d-lactate was stimulated to varying degrees by 10mm l-malate, 10mm fumarate, and 2% (v/v)Aspergillus oryzae fermentation extract (Amaferm). Amaferm treatment caused the greatest growth stimulation. Initial uptake rates (30s) and long-term uptake rates (30 min) ofd-lactate by whole cells ofS. ruminantium were increased in the presence of 10mm l-malate. Amaferm (25 l/ml) also stimulated long-term uptake rates ofd-lactate, whereas fumarate had no effect. Initial uptake ofd-lactate was depressed in the presence of fumarate or Amaferm. When eitherl-malate, fumarate, or Amaferm was included in thed-lactate growth medium, a homosuccinate fermentation resulted and an inverse relationship was observed between growth (protein synthesis) and succinate production. Recent research demonstrated that Amaferm containsl-malate, and this dicarboxylic acid may be involved in stimulatingd-lactate utilization byS. ruminantium.  相似文献   

7.
Saccharomyces cerevisiae is sensitive to d-amino acids: those corresponding to almost all proteinous l-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that d-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of d-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to d-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to d-amino acids than the wild type. We further confirmed that, upon cultivation with d-phenylalanine, N-acetyl-d-phenylalanine was accumulated in the culture but not in the wild type and hpa3Δ cells overproducing DNT cells. Thus, d-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.  相似文献   

8.
There are at least three different pathways for the catabolism of d-galacturonate in microorganisms. In the oxidative pathway, which was described in some prokaryotic species, d-galacturonate is first oxidised to meso-galactarate (mucate) by a nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase (EC 1.1.1.203). In the following steps of the pathway mucate is converted to 2-keto-glutarate. The enzyme activities of this catabolic pathway have been described while the corresponding gene sequences are still unidentified. The d-galacturonate dehydrogenase was purified from Agrobacterium tumefaciens, and the mass of its tryptic peptides was determined using MALDI-TOF mass spectrometry. This enabled the identification of the corresponding gene udh. It codes for a protein with 267 amino acids having homology to the protein family of NAD(P)-binding Rossmann-fold proteins. The open reading frame was functionally expressed in Saccharomyces cerevisiae. The N-terminally tagged protein was not compromised in its activity and was used after purification for a kinetic characterization. The enzyme was specific for NAD and accepted d-galacturonic acid and d-glucuronic acid as substrates with similar affinities. NMR analysis showed that in water solution the substrate d-galacturonic acid is predominantly in pyranosic form which is converted by the enzyme to 1,4 lactone of galactaric acid. This lactone seems stable under intracellular conditions and does not spontaneously open to the linear meso-galactaric acid.  相似文献   

9.
d-Aspartic acid (d-Asp) is an endogenous amino acid present in neuroendocrine systems. Here, we report evidence that d-Asp in the rat is involved in learning and memory processes. Oral administration of sodium d-aspartate (40 mM) for 12–16 days improved the rats’ cognitive capability to find a hidden platform in the Morris water maze system. Two sessions per day for three consecutive days were performed in two groups of 12 rats. One group was treated with Na-d-aspartate and the other with control. A significant increase in the cognitive effect was observed in the treated group compared to controls (two-way ANOVA with repeated measurements: F (2, 105) = 57.29; P value < 0.001). Five further sessions of repeated training, involving a change in platform location, also displayed a significant treatment effect [F (2, 84) = 27.62; P value < 0.001]. In the hippocampus of treated rats, d-Asp increased by about 2.7-fold compared to controls (82.5 ± 10.0 vs. the 30.6 ± 5.4 ng/g tissue; P < 0.0001). Moreover, 20 randomly selected rats possessing relatively high endogenous concentrations of d-Asp in the hippocampus were much faster in reaching the hidden platform, an event suggesting that their enhanced cognitive capability was functionally related to the high levels of d-Asp. The correlation coefficient calculated in the 20 rats was R = −0.916 with a df of 18; P < 0.001. In conclusion, this study provides corroborating evidence that d-aspartic acid plays an important role in the modulation of learning and memory.  相似文献   

10.
d-Serine, which is synthesized by the enzyme serine racemase (SR), is a co-agonist at the N-methyl-d-aspartate receptor (NMDAR). Crucial to an understanding of the signaling functions of d-serine is defining the sites responsible for its synthesis and release. In order to quantify the contributions of astrocytes and neurons to SR and d-serine localization, we used recombinant DNA techniques to effect cell type selective suppression of SR expression in astrocytes (aSRCKO) and in forebrain glutamatergic neurons (nSRCKO). The majority of SR is expressed in neurons: SR expression was reduced by ~65% in nSRCKO cerebral cortex and hippocampus, but only ~15% in aSRCKO as quantified by western blots. In contrast, nSRCKO is associated with only modest decreases in d-serine levels as quantified by HPLC, whereas d-serine levels were unaffected in aSRCKO mice. Liver expression of SR was increased by 35% in the nSRCKO, suggesting a role for peripheral SR in the maintenance of brain d-serine. Electrophysiologic studies of long-term potentiation (LTP) at the Schaffer collateral–CA1 pyramidal neuron synapse revealed no alterations in the aSRCKO mice versus wild-type. LTP induced by a single tetanic stimulus was reduced by nearly 70% in the nSRCKO mice. Furthermore, the mini-excitatory post-synaptic currents mediated by NMDA receptors but not by AMPA receptors were significantly reduced in nSRCKO mice. Our findings indicate that in forebrain, where d-serine appears to be the endogenous co-agonist at NMDA receptors, SR is predominantly expressed in glutamatergic neurons, and co-release of glutamate and d-serine is required for optimal activation of post-synaptic NMDA receptors.  相似文献   

11.
Structure of the O-specific polysaccharide chain of the lipopolysaccharide (LPS) of Shewanella japonica KMM 3601 was elucidated. The initial and O-deacylated LPS as well as a trisaccharide representing the O-deacetylated repeating unit of the O-specific polysaccharide were studied by sugar analysis along with 1H and 13C NMR spectroscopy. The polysaccharide was found to contain a rare higher sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-talo-non-2-ulosonic acid (a derivative of 4-epilegionaminic acid, 4eLeg). The following structure of the trisaccharide repeating unit was established: →4)-α-4eLegp5Ac7Ac-(2→4)-β-d-GlcpA3Ac-(1→3)-β-d-GalpNAc-(1→.  相似文献   

12.
Recently, we reported on the construction of a whole-cell biotransformation system in Escherichia coli for the production of d-mannitol from d-fructose (Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339). Supplementation of this strain with extracellular glucose isomerase resulted in the formation of 800 mM d-mannitol from 1,000 mM d-glucose. Co-expression of the xylA gene of E. coli in the biotransformation strain resulted in a d-mannitol concentration of 420 mM from 1,000 mM d-glucose. This is the first example of conversion of d-glucose to d-mannitol with direct coupling of a glucose isomerase to the biotransformation system.  相似文献   

13.
D. F. E. Richter  G. O. Kirst 《Planta》1987,170(4):528-534
d-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and d-mannitol dehydrogenase (EC 1.1.1.67) were estimated in a cell-free extract of the unicellular alga Platymonas subcordiformis Hazen (Prasinophyceae), d-Mannitol dehydrogenase had two activity maxima at pH 7.0 and 9.5, and a substrate specifity for d-fructose and NADH or for d-mannitol and NAD+. The K m values were 43 mM for d-fructose and 10 mM for d-mannitol. d-Mannitol-1-phosphate dehydrogenase had a maximum activity at pH 7.5 and was specific for d-fructose 6-phosphate and NADH. The K m value for d-fructose 6-phosphate was 5.5 mM. The reverse reaction with d-mannitol 1-phosphate as substrate could not be detected in the extract. After the addition of NaCl (up to 800 mM) to the enzyme assay, the activity of d-mannitol dehydrogenase was strongly inhibited while the activity of d-mannitol-1-phosphate dehydrogenase was enhanced. Under salt stress the K m values of the d-mannitol dehydrogenase were shifted to higher values. The K m value for d-fructose 6-phosphate as substrate for d-mannitol-1-phosphate dehydrogenase remained constant. Hence, it is concluded that in Platymonas the d-mannitol pool is derectly regulated via alternative pathways with different activities dependent on the osmotic pressure.Abbreviations Fru6P d-fructose 6-phosphate - Mes 2-(N-morpholino)ethanesulfonic acid - MT-DH d-mannitol-dehydrogenase - MT1P-DH d-mannitol-1-phosphate dehydrogenase - Pipes 1,4-piperazinediethanesulfonic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

14.
Enzymes of polyol metabolism were studied in basidiospore germination of Schizophyllum commune during periods of in vivo arabitol and mannitol pool depletion (growth on glucose-asparagine) and during their subsequent synthesis (growth on acetate-NH 4 + ). Optimal conditions for assays were established and specific activities of enzymes employing d-arabitol, d-mannitol, d-ribulose, d-fructose and d-xylulose as substrates were traced. Inquiries into the products formed during these reactions showed that d-ribulose generated arabitol while d-fructose produced mannitol with d-xylulose giving rise to xylitol. The dehydrogenase reactions were further investigated using polyacrylamide disc gel electrophoresis. Here was revealed the existence of at least two separate enzymatic activities pertaining to the catabolism of arabitol and mannitol. Also noted were the electrophoretic patterns when d-sorbitol, ribitol, xylitol and ethanol were used as substrates.  相似文献   

15.
By using d-glucose, d-xylose, d-galactose and d-fructose in the strictly aerobic yeast Rhodotorula glutinis and by comparing the half-saturation constants with inhibition constants the yeast was shown to possess a single common system for d-xylose and d-galactose (K m's and K i's all between 0.5 and 1.1 mM) but another distinct transport system for d-fructose. The transport of d-glucose has a special position in that glucose blocks apparently allotopically all the other systems observed although it uses at least one of them for its own transport. The different character of d-glucose uptake is underlined by its relative independence of pH (its K m is completely pH-insensitive) in contrast with all other sugars. At low concentrations, all sugars show mutual positive cooperativity in uptake, suggesting at least two transport sites plus possibly a modifier site on the carrier.  相似文献   

16.
There are remarkably few reports on d-arabitol production from lactose. Previous studies in our laboratory have shown that the osmophilic yeast Kluyveromyces lactis NBRC 1903 convert lactose to extracellular d-arabitol. The present study was undertaken to determine the participation of osmotic stress caused by lactose on d-arabitol production by K. lactis NBRC 1903 and to provide the information on the kinetics of d-arabitol production from lactose by K. lactis NBRC 1903. It was confirmed that d-arabitol production was triggered when an initial lactose concentration was above 278 mmol L−1. d-Arabitol yield increased with an increase in initial lactose concentration. The highest d-arabitol concentration of 79.5 mmol L−1 was achieved in the cultivation of K. lactis NBRC 1903 in a medium containing 555 mmol L−1 lactose and 40 g L−1 yeast extract. Lactose was found to play two important roles in d-arabitol production by K. lactis NBRC 1903 grown on lactose. First, lactose was assimilated as the substrate both for cell growth and d-arabitol production. Second, a high lactose concentration induced cellular response to high osmotic stress and up-regulated the flow from d-glucose-6-phosphate to d-arabitol. The arrest of cell growth triggered d-arabitol production.  相似文献   

17.
Lipomyces starkeyi is an oleaginous yeast, and has been classified in four distinct groups, i.e., sensu stricto and custers α, β, and γ. Recently, L. starkeyi clusters α, β, and γ were recognized independent species, Lipomyces mesembrius, Lipomyces doorenjongii, and Lipomyces kockii, respectively. In this study, we investigated phylogenetic relationships within L. starkeyi, including 18 Japanese wild strains, and its related species, based on internal transcribed spacer sequences and evaluated biochemical characters which reflected the phylogenetic tree. Phylogenetic analysis showed that most of Japanese wild strains formed one clade and this clade is more closely related to L. starkeyi s.s. clade including one Japanese wild strain than other clades. Only three Japanese wild strains were genetically distinct from L. starkeyi. Lipomyces mesembrius and L. doorenjongii shared one clade, while L. kockii was genetically distinct from the other three species. Strains in L. starkeyi s.s. clade converted six sugars, d-glucose, d-xylose, l-arabinose, d-galactose, d-mannose, and d-cellobiose to produce high total lipid yields. The Japanese wild strains in subclades B, C, and D converted d-glucose, d-galactose, and d-mannose to produce high total lipid yields. Lipomyces mesembrius was divided into two subclades. Lipomyces mesembrius CBS 7737 converted d-xylose, l-arabinose, d-galactose, and d-cellobiose, while the other L. mesembrius strains did not. Lipomyces doorenjongii converted all the sugars except d-cellobiose. In comparison to L. starkeyi, L. mesembrius, and L. doorenjongii, L. kockii produced higher total lipid yields from d-glucose, d-galactose, and d-mannose. The type of sugar converted depended on the subclade classification elucidated in this study.  相似文献   

18.
The mutant R33 of the obligatory aerobic yeastRhodotorula glutinis exhibited a defect ind-glucose uptake. Detailed kinetic studies ofd-glucose andd-fructose transport in wild-type and mutant strains provided evidence for the existence in the plasma membrane of a carrier specific for fructose. The transport ofd-fructose in the mutant exhibited saturation kinetics up to 1 mmol/Ld-fructose; at higher concentrations the rate ofd-fructose uptake decreased. In the wild-type strain biphasicd-fructose uptake kinetics were observed; the low-affinity component was not found in the mutant, but the high-affinity transport system persisted. During the exponential phase of growth (ond-glucose) the high-affinityd-fructose system was repressed in the wild-type strain. Mutual competition betweend-fructose andd-glucose as well as the pH dependence of transport of the two hexoses further supported the following conclusion: In the wild-type strain,d-fructose is taken up both by the specific fructose carrier (K T=0.22 mmol/L) and the glucose carrier (K T=9.13 mmol/L). The former does not translocated-glucose, the latter is damaged by the mutation. Finally H+ co-transport and plasma membrane depolarization induced by the onset ofd-fructose transport indicated that the fructose carrier is an H+ symporter.  相似文献   

19.
Thed-alanine:d-alanine-ligase-related enzymes can have three preferential substrate specificities. Usually, these enzymes synthesized-alanyl-d-alanine. In vancomycin-resistant Gram-positive bacteria, structurally related enzymes synthesized-alanyl-d-lactate or Dalanyl-d-serine. The sequence of internal fragments of eight structurald-alanine:d-alanine ligase genes from enterococci has been determined. Alignment of the deduced amino acid sequences with those of other related enzymes from Gram-negative and Gram-positive bacteria revealed the presence of four distinct sequence patterns in the putative substrate-binding sites, each correlating with specificity to a particular substrate (d-alanine:d-lactate ligases exhibited two patterns). Phylogenetic analysis showed different clusters. The enterococcal subtree was largely superimposable on that derived from 16S rRNA sequences. In lactic acid bacteria, structural divergence due to differences in substrate specificity was observed. Glycopeptide resistance proteins VanA and VanB, the VanC-type ligases, and Dd1A and DdlB from enteric bacteria andHaemophilus influenzae constituted separate clusters. Correspondence to: P. Courvalin  相似文献   

20.
Summary The basis for the difference between strains 168 (d-tyrosine-sensitive) and 23 (d-tyrosine-resistant) of Bacillus subtilis at the molecular level is that of transport of d-tyrosine into the cell. Strain 23 does not incorporate significant amounts of d-tyrosine into whole cells. A mutant derivative was isolated from strain 23 which had an altered transport system permitting d-tyrosine uptake, a change which also led to inhibition of growth by d-tyrosine. Strain 168 is extremely sensitive to growth inhibition caused by low concentrations of the d-isomer of tyrosine. A mutant derivative of strain 168 selected for its d-tyrosine resistant phenotype had an altered transport system which no longer recognized the d-isomer of tyrosine. These mutants define at least one element of the tyrosine transport system in B. subtilis and provide a convenient phenotype for the eventual location of the chromosal map position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号