首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prospecting for novel biocatalysts in a soil metagenome   总被引:16,自引:0,他引:16  
The metagenomes of complex microbial communities are rich sources of novel biocatalysts. We exploited the metagenome of a mixed microbial population for isolation of more than 15 different genes encoding novel biocatalysts by using a combined cultivation and direct cloning strategy. A 16S rRNA sequence analysis revealed the presence of hitherto uncultured microbes closely related to the genera Pseudomonas, Agrobacterium, Xanthomonas, Microbulbifer, and Janthinobacterium. Total genomic DNA from this bacterial community was used to construct cosmid DNA libraries, which were functionally searched for novel enzymes of biotechnological value. Our searches in combination with cosmid sequencing resulted in identification of four clones encoding 12 putative agarase genes, most of which were organized in clusters consisting of two or three genes. Interestingly, nine of these agarase genes probably originated from gene duplications. Furthermore, we identified by DNA sequencing several other biocatalyst-encoding genes, including genes encoding a putative stereoselective amidase (amiA), two cellulases (gnuB and uvs080), an alpha-amylase (amyA), a 1,4-alpha-glucan branching enzyme (amyB), and two pectate lyases (pelA and uvs119). Also, a conserved cluster of two lipase genes was identified, which was linked to genes encoding a type I secretion system. The novel gene aguB was overexpressed in Escherichia coli, and the enzyme activities were determined. Finally, we describe more than 162 kb of DNA sequence that provides a strong platform for further characterization of this microbial consortium.  相似文献   

2.
An agar-degrading marine bacterium identified as a Microscilla species was isolated from coastal California marine sediment. This organism harbored a single 101-kb circular DNA plasmid designated pSD15. The complete nucleotide sequence of pSD15 was obtained, and sequence analysis indicated a number of genes putatively encoding a variety of enzymes involved in polysaccharide utilization. The most striking feature was the occurrence of five putative agarase genes. Loss of the plasmid, which occurred at a surprisingly high frequency, was associated with loss of agarase activity, supporting the sequence analysis results.  相似文献   

3.
Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Δ(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).  相似文献   

4.
Rhodococcus strain I24 is able to convert indene into indandiol via the actions of at least two dioxygenase systems and a putative monooxygenase system. We have identified a cosmid clone from I24 genomic DNA that is able to confer the ability to convert indene to indandiol upon Rhodococcus erythropolis SQ1, a strain that normally can not convert or metabolize indene. HPLC analysis reveals that the transformed SQ1 strain produces cis-(1R,2S)-indandiol, suggesting that the cosmid clone encodes a naphthalene-type dioxygenase. DNA sequence analysis of a portion of this clone confirmed the presence of genes for the dioxygenase as well as genes encoding a dehydrogenase and putative aldolase. These genes will be useful for manipulating indene bioconversion in Rhodococcus strain I24. Received: 8 December 1998 / Received revision: 26 January 1999 / Accepted: 5 February 1999  相似文献   

5.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

6.
Three strains of Xenorhabdus nematophilus showed insecticidal activity when fed to Pieris brassicae (cabbage white butterfly) larvae. From one of these strains (X. nematophilus PMFI296) a cosmid genome library was prepared in Escherichia coli and screened for oral insecticidal activity. Two overlapping cosmid clones were shown to encode insecticidal proteins, which had activity when expressed in E. coli (50% lethal concentration [LC50] of 2 to 6 μg of total protein/g of diet). The complete sequence of one cosmid (cHRIM1) was obtained. On cHRIM1, five genes (xptA1, -A2, -B1, -C1, and -D1) showed homology with up to 49% identity to insecticidal toxins identified in Photorhabdus luminescens, and also a smaller gene (chi) showed homology to a putative chitinase gene (38% identity). Transposon mutagenesis of the cosmid insert indicated that the genes xptA2, xptD1, and chi were not important for the expression of insecticidal activity toward P. brassicae. One gene (xptA1) was found to be central for the expression of activity, and the genes xptB1 and xptC1 were needed for full activity. The location of these genes together on the chromosome and therefore present on a single cosmid insert probably accounted for the detection of insecticidal activity in this E. coli clone. Although multiple genes may be needed for full activity, E. coli cells expressing the xptA1 gene from the bacteriophage lambda PL promoter were shown to have insecticidal activity (LC50 of 112 μg of total protein/g of diet). This is contrary to the toxin genes identified in P. luminescens, which were not insecticidal when expressed individually in E. coli. High-level gene expression and the use of a sensitive insect may have aided in the detection of insecticidal activity in the E. coli clone expressing xptA1. The location of these toxin genes and the chitinase gene and the presence of mobile elements (insertion sequence) and tRNA genes on cHRIM1 indicates that this region of DNA represents a pathogenicity island on the genome of X. nematophilus PMFI296.  相似文献   

7.
Spontaneous kanamycin-sensitive derivatives were obtained from Bradyrhizobium japonicum (strain 110) carrying Tn5 insertions in symbiotic gene cluster I; the derivatives were shown to have deletions of cluster I plus flanking DNA which was indicated by the absence of different copies of the repeated sequences RSα and RSβ. The deletion endpoints were mapped using cloned wild-type DNA fragments containing RSα copies which also served as origins for overlapped cosmid cloning. The majority of the deletions resulted from recombinational fusion of two remote RSα copies. Novel types of repeated sequences (RSγ, RSδ, and RSε) occurring in 12, 10, and 4 copies per genome were detected. Seven, nine, and three copies of RSγ, RSδ, and RSε, respectively, were located near cluster I. It is concluded that the B. japonicum genome has an unusual DNA segment of >230 kilobase pairs characterized by the presence of repeated sequences and genes for symbiotic N2 fixation.  相似文献   

8.
Xanthomonas citri pv. citri strain 306 (Xcc306), a causative agent of citrus canker, produces endoxylanases that catalyze the depolymerization of cell wall-associated xylans. In the sequenced genomes of all plant-pathogenic xanthomonads, genes encoding xylanolytic enzymes are clustered in three adjacent operons. In Xcc306, these consecutive operons contain genes encoding the glycoside hydrolase family 10 (GH10) endoxylanases Xyn10A and Xyn10C, the agu67 gene, encoding a GH67 α-glucuronidase (Agu67), the xyn43E gene, encoding a putative GH43 α-l-arabinofuranosidase, and the xyn43F gene, encoding a putative β-xylosidase. Recombinant Xyn10A and Xyn10C convert polymeric 4-O-methylglucuronoxylan (MeGXn) to oligoxylosides methylglucuronoxylotriose (MeGX3), xylotriose (X3), and xylobiose (X2). Xcc306 completely utilizes MeGXn predigested with Xyn10A or Xyn10C but shows little utilization of MeGXn. Xcc306 with a deletion in the gene encoding α-glucuronidase (Xcc306 Δagu67) will not utilize MeGX3 for growth, demonstrating the role of Agu67 in the complete utilization of GH10-digested MeGXn. Preferential growth on oligoxylosides compared to growth on polymeric MeGXn indicates that GH10 xylanases, either secreted by Xcc306 in planta or produced by the plant host, generate oligoxylosides that are processed by Xyn10 xylanases and Agu67 residing in the periplasm. Coordinate induction by oligoxylosides of xyn10, agu67, cirA, the tonB receptor, and other genes within these three operons indicates that they constitute a regulon that is responsive to the oligoxylosides generated by the action of Xcc306 GH10 xylanases on MeGXn. The combined expression of genes in this regulon may allow scavenging of oligoxylosides derived from cell wall deconstruction, thereby contributing to the tissue colonization and/or survival of Xcc306 and, ultimately, to plant disease.  相似文献   

9.
Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively.  相似文献   

10.
Pigs are a food-producing species that readily carry Salmonella but, in the great majority of cases, do not show clinical signs of disease. Little is known about the functions required by Salmonella to be maintained in pigs. We have devised a recombinase-based promoter-trapping strategy to identify genes with elevated expression during pig infection with Salmonella enterica serovar Typhimurium. A total of 55 clones with in vivo-induced promoters were selected from a genomic library of ~10,000 random Salmonella DNA fragments fused to the recombinase cre, and the cloned DNA fragments were analyzed by sequencing. Thirty-one genes encoding proteins involved in bacterial adhesion and colonization (including bcfA, hscA, rffG, and yciR), virulence (metL), heat shock (hscA), and a sensor of a two-component regulator (hydH) were identified. Among the 55 clones, 19 were isolated from both the tonsils and the intestine, while 23 were identified only in the intestine and 13 only in tonsils. High temperature and increased osmolarity were identified as environmental signals that induced in vivo-expressed genes, suggesting possible signals for expression.  相似文献   

11.
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within δ-Proteobacteria, purple sulfur γ-Proteobacteria, -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within γ-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

12.
We cloned and sequenced a cluster of genes involved in the biosynthesis of rhizobitoxine, a nodulation enhancer produced by Bradyrhizobium elkanii. The nucleotide sequence of the cloned 28.4-kb DNA region encompassing rtxA showed that several open reading frames (ORFs) were located downstream of rtxA. A large-deletion mutant of B. elkanii, USDA94Δrtx::Ω1, which lacks rtxA, ORF1 (rtxC), ORF2, and ORF3, did not produce rhizobitoxine, dihydrorhizobitoxine, or serinol. The broad-host-range cosmid pLAFR1, which contains rtxA and these ORFs, complemented rhizobitoxine production in USDA94Δrtx::Ω1. Further complementation experiments involving cosmid derivatives obtained by random mutagenesis with a kanamycin cassette revealed that at least rtxA and rtxC are necessary for rhizobitoxine production. Insertional mutagenesis of the N-terminal and C-terminal regions of rtxA indicated that rtxA is responsible for two crucial steps, serinol formation and dihydrorhizobitoxine biosynthesis. An insertional mutant of rtxC produced serinol and dihydrorhizobitoxine but no rhizobitoxine. Moreover, the rtxC product was highly homologous to the fatty acid desaturase of Pseudomonas syringae and included the copper-binding signature and eight histidine residues conserved in membrane-bound desaturase. This result suggested that rtxC encodes dihydrorhizobitoxine desaturase for the final step of rhizobitoxine production. In light of results from DNA sequence comparison, gene disruption experiments, and dihydrorhizobitoxine production from various substrates, we discuss the biosynthetic pathway of rhizobitoxine and its evolutionary significance in bradyrhizobia.  相似文献   

13.
Past analyses of sequence diversity in high-resolution protein-encoding genes have identified putative ecological species of unicellular cyanobacteria in the genus Synechococcus, which are specialized to 60°C but not 65°C in Mushroom Spring microbial mats. Because these studies were limited to only two habitats, we studied the distribution of Synechococcus sequence variants at 1°C intervals along the effluent flow channel and at 80-μm vertical-depth intervals throughout the upper photic layer of the microbial mat. Diversity at the psaA locus, which encodes a photosynthetic reaction center protein (PsaA), was sampled by PCR amplification, cloning, and sequencing methods at 60, 63, and 65°C sites. The evolutionary simulation programs Ecotype Simulation and AdaptML were used to identify putative ecologically distinct populations (ecotypes). Ecotype Simulation predicted a higher number of putative ecotypes in cases where habitat variation was limited, while AdaptML predicted a higher number of ecologically distinct phylogenetic clades in cases where habitat variation was high. Denaturing gradient gel electrophoresis was used to track the distribution of dominant sequence variants of ecotype populations relative to temperature variation and to O2, pH, and spectral irradiance variation, as measured using microsensors. Different distributions along effluent channel flow and vertical gradients, where temperature, light, and O2 concentrations are known to vary, confirmed the ecological distinctness of putative ecotypes.  相似文献   

14.
While genetic determinants strongly influence HDL cholesterol (HDLc) levels, most genetic causes underlying variation in HDLc remain unknown. We aimed to identify novel rare mutations with large effects in candidate genes contributing to extreme HDLc in humans, utilizing family-based Mendelian genetics. We performed next-generation sequencing of 456 candidate HDLc-regulating genes in 200 unrelated probands with extremely low (≤10th percentile) or high (≥90th percentile) HDLc. Probands were excluded if known mutations existed in the established HDLc-regulating genes ABCA1, APOA1, LCAT, cholesteryl ester transfer protein (CETP), endothelial lipase (LIPG), and UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2). We identified 93 novel coding or splice-site variants in 72 candidate genes. Each variant was genotyped in the proband’s family. Family-based association analyses were performed for variants with sufficient power to detect significance at P < 0.05 with a total of 627 family members being assessed. Mutations in the genes glucokinase regulatory protein (GCKR), RNase L (RNASEL), leukocyte immunoglobulin-like receptor 3 (LILRA3), and dynein axonemal heavy chain 10 (DNAH10) segregated with elevated HDLc levels in families, while no mutations associated with low HDLc. Taken together, we have identified mutations in four novel genes that may play a role in regulating HDLc levels in humans.  相似文献   

15.
Analysis of clones isolated from a cosmid DNA library indicates that the Serratia marcescens chromosome contains at least two genes, chiA and chiB, which encode distinct secreted forms of the enzyme chitinase. These genes have been characterized by inspection of chitinase activity and secreted proteins in Escherichia coli strains containing subclones of these cosmids. The two chitinase genes show no detectable homology to each other. DNA sequence analysis of one of the genes predicts an amino acid sequence with an N-terminal signal peptide typical of genes encoding secreted bacterial proteins. This gene was mutagenized by cloning a neomycin phosphotransferase gene within its coding region, and the insertion mutation was recombined into the parental S. marcescens strain. The resulting chiA mutant transconjugant showed reduced chitinase production, reduced inhibition of fungal spore germination and reduced biological control of a fungal plant pathogen.  相似文献   

16.
17.
Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI.  相似文献   

18.
V134, a marine isolate of the Vibrio genus, was found to produce a new beta-agarase of the GH16 family. The relevant agarase gene agaV was cloned from V134 and conditionally expressed in Escherichia coli. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were around 40°C and 7.0. AgaV was demonstrated to be useful in two aspects: first, as an agarolytic enzyme, the purified recombinant AgaV could be employed in the recovery of DNA from agarose gels; second, as a secretion protein, AgaV was explored at the genetic level and used as a reporter in the construction of a secretion signal trap which proved to be a simple and efficient molecular tool for the selection of genes encoding secretion proteins from both gram-positive and gram-negative bacteria.  相似文献   

19.
The screening of metagenomic DNA of the microbial community associated with the Baikalian sponge Lubomirskia baicalensis was performed in order to investigate the presence of polyketide synthase (PKS) genes. PKS enzyme systems take part in the synthesis of a great number of biologically active substances. The cloning and sequencing of amplified products of the ketosynthase domain section of the PKS gene cluster revealed 15 fragments of PKS genes with amino acid sequences differing from each other by 35?C65%. A BLASTX analysis showed that all of these sequences belong to KS domains identified in various groups of microorganisms, i.e., Alpha-, Beta-, and Deltaproteobacteria; Verrucomicrobia; Cyanobacteria; and Chlorophyta. Some sequences were related to genes that participate in the biosynthesis of curacin A (CurI, CurJ), stigmatellin (StiC, StiG), nostophycin (NpnB), and cryptophycin (CrpB). The homology of the found sequences with those of the EMBL database lies in the range of 50?C82%, which indicates that the freshwater sponge community contains genes that encode new, not yet studied polyketide substances of potential biotechnological significance.  相似文献   

20.
《Gene》1996,172(1):87-91
Mithramycin (Mtm) is an aromatic polyketide which shows antibacterial and antitumor activity. From a chromosomal cosmid library of Streptomyces argillaceus, a Mtm producer, a clone (cosAR7) was isolated by homology to the actI/III region of S. coelicolor and the strDEM genes of S. griseus. From this clone, a 5.3-kb DNA region was sequenced and found to encode six open reading frames (designated as mtmQXPKSTI), five of them transcribed in the same direction. The deduced products of five of these genes resembled components of type-II polyketide synthases. The mtm genes would code for an aromatase (mtmQ), a polypeptide of unknown function (mtmX), a β-ketoacylsynthase (mtmP) and a related ‘chain length factor’ (mtmK), an acyl carrier protein (mtmS) and a β-ketoreductase (mtmT1). The involvement of this gene cluster in Mtm biosynthesis was demonstrated by the Mtm non-producing phenotype of mutants generated in two independent insertional inactivation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号