首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The transport of 125I-labeled thyroxine (T4) from the cerebrospinal fluid (CSF) into brain and choroid plexus (CP) was measured in anesthetized rabbit [0.5 mg/kg medetomidine (Domitor) and 10 mg/kg pentobarbitonal sodium (Sagatal) iv] using the ventriculocisternal (V-C) perfusion technique. 125I-labeled T4 contained in artificial CSF was continually perfused into the lateral ventricles for up to 4 h and recovered from the cisterna magna. The %recovery of 125I-labeled T4 from the aCSF was 47.2+/-5.6% (n=10), indicating removal of 125I-labeled T4 from the CSF. The recovery increased to 53.2+/-6.3% (n=4) and 57.8+/-14.8% (n=3), in the presence of 100 and 200 microM unlabeled-T4, respectively (P<0.05), indicating a saturable component to T4 removal from CSF. There was a large accumulation of 125I-labeled T4 in the CP, and this was reduced by 80% in the presence of 200 microM unlabeled T4, showing saturation. In the presence of the thyroid-binding protein transthyretin (TTR), more 125I-labeled T4 was recovered from CSF, indicating that the binding protein acted to retain T4 in CSF. However, 125I-labeled T4 uptake into the ependymal region (ER) of the frontal cortex also increased by 13 times compared with control conditions. Elevation was also seen in the hippocampus (HC) and brain stem. Uptake was significantly inhibited by the presence of endocytosis inhibitors nocodazole and monensin by >50%. These data suggest that the distribution of T4 from CSF into brain and CP is carrier mediated, TTR dependent, and via RME. These results support a role for TTR in the distribution of T4 from CSF into brain sites around the ventricular system, indicating those areas involved in neurogenesis (ER and HC).  相似文献   

3.
4.
5.
6.
C P Chen  C Wagner 《Life sciences》1975,16(10):1571-1581
The uptake of 5-methyltetrahydrofolic acid (5-MTHF) by the isolated choroid plexus of hog was studied and shown to be both temperature and time dependent. Uptake of 5-MTHF by the isolated choroid plexus was a saturable process and exhibited a Kt of 0.9 × 10−6M and Vmax of 1.39 nmole/gm dry wt/min. The system did not require the presence of sodium ion nor was it ouabain sensitive. The presence of metabolic inhibitors, e.g., 2,4-dinitrophenol, did not suppress the uptake rate. Deprivation of oxygen also did not affect the rate of 5-MTHF transport. Addition of folic acid to the incubating medium led to countertransport of intracellular 5-MTHF. Efflux studies also indicated that the majority of the intracellular 5-MTHF was rapidly exchangeable and therefore probably present in the cell water in a free state. Chromatographic analyses confirmed that 5-MTHF was not metabolically altered during the transport process. It is suggested that 5-methyltetrahydrofolic acid is transported in the isolated choroid plexus via a carrier-mediated process.  相似文献   

7.
The biological effects of the insulin-like growth factors, IGF-I and IGF-II, on their receptors are modulated by IGF-binding proteins. Recently, we isolated a cDNA clone for one member of the family of IGF-binding proteins, BP-3A, a 30 kilodalton (kDa) protein synthesized by the BRL-3A rat liver cell line. BP-3A is related to but distinct from two other cloned IGF-binding proteins, the human amniotic fluid binding protein and the glycosylated binding subunit of the 150 kDa IGF-binding protein complex in serum. It is expressed in multiple nonneural tissues and in serum in the fetal rat and decreases after birth, similar to the developmental pattern of IGF-II expression. IGF-I, IGF-II, and their receptors are expressed in brain. The present study examines the expression of BP-3A in the rat central nervous system. By Northern blot analysis, BP-3A mRNA is present at high levels in brain stem, cerebral cortex, and hypothalamus from 21-day gestation rats and, like IGF-II mRNA, persists in adult rat brain. The site of BP-3A mRNA synthesis was localized by in situ hybridization to coronal sections of adult rat brain using 35S-labeled oligonucleotides, 48 bases in length, complementary and anticomplementary to the coding region of BP-3A. Specific hybridization of the BP-3A probe was observed exclusively to the choroid plexus extending from the level of the medial preoptic nucleus to the arcuate nucleus of the hypothalamus, similar to the previously reported preferential localization of IGF-II mRNA to the choroid plexus. Synthesis of BP-3A mRNA by choroid plexus suggested that BP-3A might be secreted into the cerebrospinal fluid. A 30 kDa IGF-binding protein was demonstrated in rat cerebrospinal fluid that is recognized by antibodies to BP-3A and, like purified BP-3A, has equal affinity for IGF-I and IGF-II. By analogy with other transport proteins synthesized by the choroid plexus, BP-3A may facilitate the secretion of IGF-II to the cerebrospinal fluid and modulate its biological actions at distant sites within the brain.  相似文献   

8.
PEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2(+/+)) and null (PEPT2(-/-)) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity (K(m) = 34 microM), low capacity (V(max) = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small (K(d) = 0.063 microL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood-cerebrospinal fluid interface.  相似文献   

9.
10.
Formation of amyloid plaques is the hallmark of Alzheimer’s disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases β-amyloid (Aβ) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aβ in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aβ in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aβ efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aβ transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 (2.5 μg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aβ levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aβ40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aβ from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aβ in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aβ transport by the blood-CSF barrier in brain ventricles.  相似文献   

11.
12.
13.
14.
Summary Localization of carbonic anhydrase activity was studied electron microscopically on cells of the rat choroid plexus epithelium. For the ultracytochemical detection of these activities, Yokota's technique (1969), which is the modification of Hansson's method (1967) was employed. Numerous electron dense reaction products were observed in the microvilli of the choroidal epithelial cell. The reaction deposits were also remarkably present in the infoldings of the basal plasmalemma but to a lesser extent than in the microvilli. The localization sites were mainly on the plasma membrane, but some reaction products were also observed in the cytoplasm near the plasma membrane. Hardly any reaction product was found in the intracellular organelles except for the mitochondria in which reaction products were occasionally observed on the cristae. These activities were completely inhibited by acetazolamide. As the carbonic anhydrase activity was histochemically seen in the microvilli and the basal infoldings, it is likely that carbonic anhydrase is related to an active transport process in the secretion of cerebrospinal fluid as is Na+, K+-ATPase (Masuzawa et al. 1980).  相似文献   

15.
Summary Electron microscopic cytochemical studies on the rat choroid plexus epithelium have revealed enzymatic sites for the activities of acid phosphatase, glucose-6-phosphatase and thiamine pyrophosphatase on different organelles. Only the activity of acid phosphatase has been previously described. Acid phosphatase, glucose-6-phosphatase and thiamine pyrophosphatase were respectively situated mainly in the lysosomes, in the endoplasmic reticulum and nuclear envelope, and in the Golgi complex. These three enzymes can thus be considered as marker enzymes for their respective organelles in the choroid plexus epithelial cells as well as in other tissue cells. The possible function of these enzymes in the choroid plexus epithelial cells is also briefly discussed.  相似文献   

16.
Electron microscopic cytochemical studies on the rat choroid plexus epithelium have revealed enzymatic sites for the activities of acid phosphatase, glucose-6-phosphatase and thiamine pyrophosphatase on different organelles. Only the activity of acid phosphatase has been previously described. Acid phosphatase, glucose-6-phosphatase and thiamine pyrophosphatase were respectively situated mainly in the lysosomes, in the endoplasmic reticulum an nuclear envelope, and in the Golgi complex. These three enzymes can thus be considered as marker enzymes for their respective organelles in the choroid plexus epithelial cells as well as in other tissue cells. The possible function of these enzymes in the choroid plexus epithelial cells is also briefly discussed.  相似文献   

17.
The secretion of cerebrospinal fluid by the epithelial cells of choroid plexus is regulated by membrane receptors coupled to adenylyl cyclases or to phospholipase C. These intracellular signalling pathways as their interactions were investigated in a sheep choroid plexus cell line. Endothelin-1, bradykinin and serotonin induced a transient dose-dependent increase in intracellular calcium. EC 50 were 10(-8) M for endothelin-1, 10(-8) M for bradykinin and 10(-6) M for serotonin. Maximal increase in intracellular calcium was comparable for bradykinin and serotonin, but was 3 to 5 fold larger for endothelin-1. Successive stimulations with endothelin-1, serotonin or bradykinin elicited calcium increases similar to single stimulations reflecting absence of heterologous desensitization between these receptors. Forskolin-induced cAMP accumulation was potentiated by bradykinin, but not by serotonin and endothelin-1. This potentiation resulted from an increase in cAMP production rather than to an inhibition of cAMP hydrolysis. These data suggest that serotonin, endothelin-1 and bradykinin each use specific signalling pathways in the sheep choroid plexus cells.  相似文献   

18.
Intracellular electrical potential and potassium activity was measured by means of microelectrodes in the epithelial cells of choroid plexus from bullfrogs (Rana catesbeiana). Ouabain applied from the ventricular side caused an abrupt depolarisation of 10 mV but only a gradual loss of potassium from the cells. Readministration of potassium to the ventricular solution of plexuses which were previously depleted of potassium, caused a hyperpolarisation of about 4 mV. These two experiments are consistent with the notion of an electrogenic Na+/K+ pump situated at the ventricular membrane and which pumps potassium into the cell and sodium into the ventricle. The numerical values obtained suggest that 3 sodium ions are pumped for 2 potassium ions. The permeability coefficient for potassium exit from the cell is calculated to be 1.24 . 10(-5) cm-1 . s-1 expressed per cm2 of flat epithelium.  相似文献   

19.
In vitro, the transport of [14C]riboflavin into and from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, was studied. With concentrations of [14C]riboflavin of 0.7 microM (or greater) in the incubation medium, the choroid plexus accumulated [14C]riboflavin against a large concentration gradient by a process that did not depend on binding or intracellular metabolism of the [14C]riboflavin. The [14C]riboflavin accumulation process in isolated choroid plexus could be described by Michaelis-Menten transport kinetics (kt = 78 microM and Ymax = 1.65 mmol kg-1 (15 min)-1) and was inhibited by other flavins and probenecid but not by ribose, weak bases, or other B vitamins. The accumulation process was markedly depressed by iodoacetate and low temperatures. With a concentration of 0.08 microM [14C]riboflavin in the incubation medium, 28% of the [14C]riboflavin within the choroid plexus was converted to [14C]FAD or [14C]FMN intracellularly. Unlike the active transport of [14C]riboflavin into choroid plexus, accumulated [14C]riboflavin departed choroid plexus by a process independent of intracellular concentration or temperature. The efflux of [14C]riboflavin from choroid plexus could be described by first oder kinetics with a rate constant of -0.08 min-1.  相似文献   

20.
Intestinal dipeptidyl peptidase IV and gamma-glutamyltransferase were compared to the corresponding kidney enzymes with respect to immunological and electrophoretic properties. The influences of selected effectors on the two enzymes were also studied. The two kidney peptidases exhibited the reaction of total identity with the corresponding intestinal enzymes in immunodiffusion. Furthermore, the intestinal dipeptidyl peptidase IV and gamma-glutamyl transferase showed the same inhibition patterns as the corresponding kidney enzymes and the acceptor specificity of the intestinal gamma-glutamyl-transferase was found to be identical to that of the kidney enzyme. The electrophoretic mobilities of dipeptidyl peptidase IV from the two organs differed greatly. The difference was almost abolished by treatment with neuraminidase, suggesting that the variation in mobility was due to different contents of sialic acid. It is suggested that the intestinal brush border peptidases, dipeptidyl peptidase IV and gamma-glutamyltransferase, are closely related to the corresponding enzymes obtained from the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号