首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholecystokinin (CCK) is expressed in the central and peripheral nervous systems and functions as a neurotransmitter and neuroendocrine hormone. The in vivo forms of CCK include CCK-83, -58, -39, -33, -22, -12, and -8. Tissues in the periphery produce the larger forms of CCK, such as CCK-58, whereas the brain primarily produces CCK-8. The different biologically active forms of CCK observed in vivo may result from cell-specific differences in endoproteolytic cleavage during post-translational processing. Evidence suggests that cleavages of pro-CCK occur in a specific sequential order. To further delineate the progression of cleavages during pro-CCK maturation, mutagenesis was used to disrupt putative mono- and dibasic cleavage sites. AtT-20 cells transfected with wild-type rat prepro-CCK secret CCK-22 and -8. Mutagenesis of the cleavage sites of pro-CCK had profound effects on the products that were produced. Substitution of basic cleavage sites with nonbasic amino acids inhibits cleavage and leads to the secretion of pathway intermediates such as CCK-83, -33, and -12. These results suggest that CCK-58 is cleaved to both CCK-33 and -22. Furthermore, CCK-8 and -12 are likely derived from cleavage of CCK-33 but not CCK-22. Alanine substitution at the same site completely blocked production of amidated products, whereas serine substitution did not. The cleavages observed at nonbasic residues in this study may represent the activity of enzymes other than PC1 and carboxypeptidase E, such as the enzyme SKI-1. A model for the progression of pro-CCK processing in AtT-20 cells is proposed. The findings in this study further supports the hypothesis that pro-CCK undergoes parallel pathways of proteolytic cleavages.  相似文献   

2.
Endocrine tumor cells in culture and in vitro cleavage assays have shown that PC1 and PC2 are capable of processing pro-CCK into smaller, intermediate and final, bioactive forms. Similar studies have shown that PC5 has the ability to process a number of propeptides. Here, we use GT1-7 (mouse hypothalamic) and SK-N-MC and SK-N-SH (human neuroblastoma) tumor cell lines to study the ability of PC5 to process pro-CCK. RT-PCR and Western blot analysis showed that the cells express PC5 mRNA and protein, but not PC1 or PC2. They were engineered to stably overexpress CCK and cell media was analyzed for pro-CCK expression and cleavage of the prohormone. Radioimmunoassays showed that pro-CCK was expressed, but no amidated CCK was detected. Lack of production of amidated CCK may be due to the lack of the appropriate carboxypeptidase and amidating enzymes. Production of glycine-extended CCK processing products was evaluated by treatment of media with carboxypeptidase B followed by analysis with a CCK Gly RIA. Glycine-extended forms of the peptide were found in the media. The predominant forms co-eluted with CCK 12 Gly and CCK 22 Gly on gel filtration chromatography. The results demonstrate that these cell lines which express PC5 and not PC1 or PC2 have the ability to process pro-CCK into intermediate, glycine-extended forms more closely resembling pro-CCK products in intestine than in brain.  相似文献   

3.
A rat medullary thyroid carcinoma cell line, CA-77, was shown to express the cholecystokinin (CCK) gene. Measurements using a library of sequence-specific radioimmunoassays before and after enzymic treatment of extracts and chromatographic fractions showed that the cells contained 1.0 pmol of alpha-carboxyamidated cholecystokinins/10(6) cells, 0.4 pmol of glycine-extended intermediates/10(6) cells and 1.0 pmol of further C-terminal-extended pro-CCK/10(6) cells. Gel chromatography and reverse-phase h.p.l.c. revealed both sulphated and nonsulphated CCK-8 in the cells. The growth medium contained in addition alpha-amidated CCK-33, glycine-extended CCK-8 and pro-CCK. Exposure to 0.1 microM-dexamethasone for 6 days increased the cellular content and secretion of all of the described CCK peptides by 2-3-fold. The increase was first noted after 3 days of treatment. Monensin inhibited the synthesis of alpha-carboxyamidated CCK and the secretion of all of the CCK forms measured. Colchicine at a low concentration (0.2 mumol/l) apparently increased the synthesis and secretion of alpha-carboxyamidated CCK, whereas higher concentrations inhibited CCK synthesis. Finally, chloroquine inhibited the alpha-carboxyamidation of CCK. We conclude that the CA-77 cell line is a useful tool for studies of the expression and post-translational processing of pro-CCK.  相似文献   

4.
Using radioimmunoassays for amidated and glycine-extended gastrin before and after trypsin-carboxypeptidase B cleavage and chromatography, alpha-carboxyamidation of porcine antral progastrin has been related to tyrosine-O-sulfation and proteolytic cleavages. Corresponding to the sequence at the proteolysis and amidation site, -Gly-Arg-Arg-, antrum contained three COOH-terminally extended precursor types. The glycine-extended gastrins were present in the highest concentrations (241 +/- 58 pmol/g). The degree of tyrosine-O-sulfation was identical for amidated and precursor gastrins irrespective of component size, whereas the component size differed for glycine-extended and amidated forms. For instance, gastrin-34-Gly constituted 54% of the glycine-extended gastrins, while gastrin-34 comprised 8% of the amidated gastrins. The results indicate that tyrosine-O-sulfation occurs prior to NH2-terminal cleavages, which again precede carboxyamidation; but a significant correlation between tyrosine-O-sulfation and proteolytic cleavages or alpha-carboxy-amidation of antral gastrin could not be demonstrated. Furthermore, our results suggest that the immediate precursor of the principal hormonal form, gastrin-17, is gastrin-17-Gly rather than gastrin-34 as previously believed.  相似文献   

5.
ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments.  相似文献   

6.
The cholecystokinin (CCK) receptor-1 (CCK1R) is a G protein-coupled receptor, which mediates important central and peripheral cholecystokinin actions. Our aim was to progress in mapping of the CCK1R binding site by identifying residues that interact with the methionine and phenylalanine residues of the C-terminal moiety of CCK because these are crucial for its binding and biological activity, and to determine whether CCK and the selective non-peptide agonist, SR-146,131, share a common binding site. Identification of putative amino acids of the CCK1R binding site was achieved by dynamics-based docking of the ligand CCK in a refined three-dimensional model of the CCK1R using, as constraints, previous results that identified contact points between residues of CCK and CCK1R (Kennedy, K., Gigoux, V., Escrieut, C., Maigret, B., Martinez, J., Moroder, L., Frehel, D., Gully, D., Vaysse, N., and Fourmy, D. (1997) J. Biol. Chem. 272, 2920-2926 and Gigoux, V., Escrieut, C., Fehrentz, J. A., Poirot, S., Maigret, B., Moroder, L., Gully, D., Martinez, J., Vaysse, N., and Fourmy, D. (1999) J. Biol. Chem. 274, 20457-20464). By this approach, a series of residues forming connected hydrophobic clusters were identified. Pharmacological and functional analysis of mutated receptors indicated that a network of hydrophobic residues including Cys-94, Met-121, Val-125, Phe-218, Ile-329, Phe-330, Trp-326, Ile-352, Leu-356, and Tyr-360, is involved in the binding site for CCK and in the activation process of the CCK1R. Within this hydrophobic network, the physico-chemical nature of residue 121 seems to be essential for CCK1R functioning. Finally, the biological properties of mutants together with dynamic docking of SR-146,131 in the CCK1R binding site demonstrated that SR-146,131 occupies a region of CCK1R binding site which interacts with the C-terminal amidated tripeptide of CCK, i.e. Met-Asp-Phe-NH(2). These new and important insights will serve to better understand the activation process of CCK1R and to design or optimize ligands.  相似文献   

7.
Beinfeld MC  Wang W 《Life sciences》2002,70(11):1251-1258
Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.  相似文献   

8.
The cDNA for porcine preprocholecystokinin (pre-pro-CCK) was engineered for expression in mammalian cells under the control of the Rous sarcoma virus-long terminal repeat promoter. This expression construct was transfected into the murine anterior pituitary cell line, AtT-20. A stable cell line (AtT-20/CCK) was derived that expresses CCK mRNA indistinguishable from the CCK mRNA found in pig brain or gut. The AtT-20/CCK cells carry out proteolytic processing and sulfation reactions to generate authentic sulfated CCK8 from pro-CCK. The cells also store and secrete CCK-immunoreactive peptides. This secretion can be stimulated with corticotropin releasing factor, the natural secretagogue for anterior pituitary cells. In contrast, monkey kidney epithelial cells (COS cells), which are transiently transfected to express CCK, predominantly secrete nonsulfated pro-CCK into the medium. These studies show that a murine neuroendocrine cell line contains the complete processing machinery required to generate authentic porcine CCK8. The processing events include simultaneous proteolytic processing at one and two basic amino acid sites and sulfation of tyrosine residues. The cell line thus duplicates exactly the processing patterns found to occur in pig brain cortex.  相似文献   

9.
Antisera directed against the amino-terminus of porcine CCK 33 detects related immunoreactivity in rat brain extracts, the distribution of which follows that of CCK 8. Sephadex chromatography indicates that several immunoreactive peptides are present with a molecular weight range of 2600-3500. These peptides are likely to be CCK 39 or CCK 33 and the amino terminal segments of CCK 39/33 without the CCK 8 sequence. The presence of CCK 39/33 and its amino-terminal fragments without CCK 22 and its amino-terminal fragments confirms the absence of CCK 22 in the rat brain. This cleavage at CCK 22 is one of the major differences between the processing of CCK in rat brain and gut and may reflect differences in their physiological roles.  相似文献   

10.
The effect of the familial hypertrophic cardiomyopathy mutations, A13T, F18L, E22K, R58Q, and P95A, found in the regulatory light chains of human cardiac myosin has been investigated. The results demonstrate that E22K and R58Q, located in the immediate extension of the helices flanking the regulatory light chain Ca(2+) binding site, had dramatically altered Ca(2+) binding properties. The K(Ca) value for E22K was decreased by approximately 17-fold compared with the wild-type light chain, and the R58Q mutant did not bind Ca(2+). Interestingly, Ca(2+) binding to the R58Q mutant was restored upon phosphorylation, whereas the E22K mutant could not be phosphorylated. In addition, the alpha-helical content of phosphorylated R58Q greatly increased with Ca(2+) binding. The A13T mutation, located near the phosphorylation site (Ser-15) of the human cardiac regulatory light chain, had 3-fold lower K(Ca) than wild-type light chain, whereas phosphorylation of this mutant increased the Ca(2+) affinity 6-fold. Whereas phosphorylation of wild-type light chain decreased its Ca(2+) affinity, the opposite was true for A13T. The alpha-helical content of the A13T mutant returned to the level of wild-type light chain upon phosphorylation. The phosphorylation and Ca(2+) binding properties of the regulatory light chain of human cardiac myosin are important for physiological function, and alteration any of these could contribute to the development of hypertrophic cardiomyopathy.  相似文献   

11.
The precursor of cholecystokinin (pro-CCK) was expressed and purified from media of stably transfected D.Mel-2 cell as an V5-His tagged fusion protein. Its identity was confirmed using SDS-PAGE, immunoblotting, gel filtration chromatography, HPLC, and Mass Spectroscopy. Two major forms of pro-CCK were found with a molecular weight of about 14.4 and 11.3 kDa. The smaller form represents the V5-His tagged pro-CCK after cleavage at a single arginine residue at CCK-58. This cleavage is probably being performed by endogenous proteases in these cells. Purification of the desired larger form of pro-CCK is possible using a nickel column with a recovery of about 20%, yielding 500 microg/L media. The purified protein is stable for several months and can be used for further functional studies of pro-CCK.  相似文献   

12.
The procoagulant function of activated factor V (FVa) is inhibited by activated protein C (APC) through proteolytic cleavages at Arg306, Arg506, and Arg679. The effect of APC is potentiated by negatively charged phospholipid membranes and the APC cofactor protein S. Protein S has been reported to selectively stimulate cleavage at Arg306, an effect hypothesized to be related to reorientation of the active site of APC closer to the phospholipid membrane. To investigate the importance of protein S and phospholipid in the APC-mediated cleavages of individual sites, recombinant FV variants FV(R306Q/R679Q) and FV(R506Q/R679Q) (can be cleaved only at Arg506 and Arg306, respectively) were created. The cleavage rate was determined for each cleavage site in the presence of varied protein S concentrations and phospholipid compositions. In contrast to results on record, we found that protein S stimulated both APC cleavages in a phospholipid composition-dependent manner. Thus, on vesicles containing both phosphatidylserine and phosphatidylethanolamine, protein S increased the rate of Arg306 cleavage 27-fold and that of Arg506 cleavage 5-fold. Half-maximal stimulation was obtained at approximately 30 nm protein S for both cleavages. In conclusion, we demonstrate that APC-mediated cleavages at both Arg306 and Arg506 in FVa are stimulated by protein S in a phospholipid composition-dependent manner. These results provide new insights into the mechanism of APC cofactor activity of protein S and the importance of phospholipid composition.  相似文献   

13.
Antiserum 1942 raised against the synthetic peptide V-9-M is specific for the amino-terminus of pro-cholecystokinin (pro-CCK). It detects three major peptides in whole rat brain extracts with molecular weights of about 13 000 (peak 1), 8000 (peak 2) and 2700 (peak 3), of which the major one is peak 3. Rat brain was found to contain large quantities of these V-9-M-like peptides. Subcellular fractionation of whole rat brain was performed to determine what cellular component was enriched in these peptides. The molecular weight of the V-9-M-like and CCK-8-like peptides enriched in various subcellular fractions has been determined by Sephadex G-50 chromatography. Primary subcellular fractionation experiments indicated a significant enrichment of V-9-M-like peptides in the mitochondrial pellet (P2), a lesser amount in the microsomal pellet (P3), and a slight enrichment in the soluble fraction (S3). Further purification of the P2 fraction demonstrated an increase of V-9-M-like immunoreactivity in purified synaptosomes. With the exception of the enrichment in the soluble fraction, V-9-M-like peptides follow a similar distribution to that of CCK-8-like peptides. Sephadex chromatography of P2 and P3 fractions indicates that the major form of V-9-M present is the peak 3 (2700) form. This V-9-M-like peptide may represent an intermediate in the processing of CCK, and its presence in synaptosomes may indicate that the proteolytic cleavage of pro-CCK into CCK 58 and peak 3 takes place in synaptic vesicles.  相似文献   

14.
Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages.  相似文献   

15.
An endoproteolytic activity that specifically cleaves CCK 33, producing CCK 8, has been purified from a rat brain synaptosome preparation. The purification, which included anion exchange, chromatofocusing, hydroxyapatite, and gel filtration chromatography, resulted in a greater than 3000-fold increase in specific activity. This neutral endoprotease (pH optimum 8) exists as a 90-kDa species, which can be dissociated into active 40-kDa species. The enzyme is a non-trypsin serine protease, which is inhibited by diisopropyl-fluorophosphate and p-aminobenzamidine but not by soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, aprotinin, or a number of thiol or metalloprotease inhibitors. It is highly substrate-specific and cleaves neither trypsin, enteropeptidase, kallikrein substrates, nor analogues of mono- or dibasic cleavage sites of prohormones other than pro-CCK. The endoprotease will not cleave CCK 12 desulfate or CCK (20-29), although these peptides contain common sequences with CCK-33. The protease does cleave [Glu27]CCK (20-29), a peptide in which the glutamate mimics the negative charge normally present on tyrosine sulfate. This suggests that the negative charge at position 27 is important in substrate recognition. The enzyme will also cleave CCK 33 and CCK (1-21) on the carboxyl-terminal side of a single lysine residue in position 11. The subcellular location and specificity of this endoprotease make it a good candidate for a CCK-processing protease.  相似文献   

16.
Several studies indicate that cholesterol esterification is deregulated in cancers. The present study aimed to characterize the role of cholesterol esterification in proliferation and invasion of two tumor cells expressing an activated cholecystokinin 2 receptor (CCK2R). A significant increase in cholesterol esterification and activity of Acyl-CoA:cholesterol acyltransferase (ACAT) was measured in tumor cells expressing a constitutively activated oncogenic mutant of the CCK2R (CCK2R-E151A cells) compared with nontumor cells expressing the wild-type CCK2R (CCK2R-WT cells). Inhibition of cholesteryl ester formation and ACAT activity by Sah58-035, an inhibitor of ACAT, decreased by 34% and 73% CCK2R-E151A cell growth and invasion. Sustained activation of CCK2R-WT cells by gastrin increased cholesteryl ester production while addition of cholesteryl oleate to the culture medium of CCK2R-WT cells increased cell proliferation and invasion to a level close to that of CCK2R-E151A cells. In U87 glioma cells, a model of autocrine growth stimulation of the CCK2R, inhibition of cholesterol esterification and ACAT activity by Sah58-035 and two selective antagonists of the CCK2R significantly reduced cell proliferation and invasion. In both models, cholesteryl ester formation was found dependent on protein kinase zeta/ extracellular signal-related kinase 1/2 (PKCζ/ERK1/2) activation. These results show that signaling through ACAT/cholesterol esterification is a novel pathway for the CCK2R that contributes to tumor cell proliferation and invasion.  相似文献   

17.
Discrete cleavages within 28S rRNA divergent domains have previously been found to coincide with DNA fragmentation during apoptosis. Here we show that rRNA and DNA cleavages can occur independently in apoptotic cells, i.e. that the previously observed correlation is likely to be coincidental. In HL-60 cells, apoptosis with massive DNA fragmentation could be induced without any signs of rRNA cleavage. The opposite situation; rRNA cleavage without concomitant internucleosomal DNA fragmentation, was found in okadaic acid-treated Molt-4 cells. Other leukemia cell lines underwent apoptosis either without (K562 and Molt-3) or with (U937) both forms of polynucleotide cleavage. In K562 cells transfected with a temperature-sensitive p53 mutant, internucleosomal DNA fragmentation but not 28S rRNA cleavage was inducible by wild-type p53 expression. The absence of apoptotic rRNA cleavage in some cell types suggests that this phenomenon is tightly regulated and unrelated to DNA fragmentation or a presumed scheme for general macromolecular degradation in apoptotic cells.  相似文献   

18.
Onconase, a protein from amphibian eggs and a homologue of pancreatic ribonuclease (RNase) superfamily, is cytotoxic, exhibits antitumor and antiviral activity, and is in phase III clinical trials. It has been shown to predominantly target cellular tRNA on its entry into mammalian cells (Saxena, S. K., Sirdeshmukh, R., Ardelt, W., Mikulski, S. M., Shogen, K., and Youle, R. J. (2002) J. Biol. Chem. 277, 15142-15146). Cleavage site mapping using natural tRNA substrates, in vitro, revealed predominant cleavage sites at UG and GG residues. Cleavages at UG or the less intense cleavages at CG sites are consistent with the known base specificity of onconase. However, predominance of cleavages at selected G-G bonds is unusual for a homologue of pancreatic RNases. Interestingly, in at least three of the four tRNA substrates studied, the predominant cleavages mapped in the triplet UGG located in the context of the variable loop or the D-arm of the tRNA. The cleavage specificity of onconase observed by us thus indicates another special feature of this enzyme, which may be relevant to its cellular actions.  相似文献   

19.
Key amino acids of the cholecystokinin (CCK) peptide for receptor binding are sulfated Y27, W30, D32, and F33-NH(2). Three-dimensional modeling showed that the CCK-A receptor (CCK-AR) antagonist devazepide penetrated into the transmembrane (TM) domains, whereas CCK was placed on the surface of the CCK-AR. Four types of rat CCK-AR cDNAs were transfected into CHO-K1 and COS-7 cells: normal CCK-AR cDNA transfected cells (wild type, WT); K120 substituted with V; K130V; and R352V. Binding of [3H]CCK-8 was observed in WT and K130V, but not in K120V and R352V. CCK caused Ca(2+) spiking in WT and K130V, whereas K120V and R352V had no effect. Three chimeras including the CCK-AR/3ibeta2 adrenergic receptor (beta2AR), 3Nibeta2AR, and 3Cibeta2AR were constructed. Two groups of point mutations in the CCK-AR3i were also made: Y252V, S274V, S281V, and S289V (non-phospho-acceptor Y or S); S260V, S264V, S271V, and S275V (phospho-acceptor S). WT and CCK-AR/3Cibeta2AR increased [Ca(2+)](i) in response to CCK; 3Nibeta2AR was vice versa. CCK failed to increase [IP(3)] in phospho-acceptor S to V without affecting binding. Non-phospho-acceptor S or Y to V showed normal response. Thus, Lys120 outside the TM2 and Arg352 outside the TM6 of the CCK-AR are amino acids interacting with Tyr[SO(3)H]27 and Asp32 of the CCK peptide for binding. Phospho-acceptor Ser groups in the CCK-AR 3Ni are amino acids for initiating cell signaling.  相似文献   

20.
Rat kidney membranes were solubilized by Triton X-100 and the CCK-8 degrading peptidases were resolved by chromatography on DEAE-cellulose. Four proteases were detected: two phosphoramidon-sensitive endopeptidases (EC 3.4.24.11), a bestatin-sensitive aminopeptidase and an unidentified enzyme. The pattern of cleavage of CCK-8 and shorter C-terminal fragments by endopeptidase 24.11 was investigated and indicated that the Gly29-Trp30, Trp30-Met31 and Asp32-Phe33 were scissile bonds. However, the cleavage pattern differed markedly from one CCK peptide to another: in the penta- and hexapeptide of CCK the bonds hydrolyzed were either Asp-Phe and Trp-Met or, Asp-Phe and Gly-Trp, respectively. The presence of the sulfate group on the tyrosine residue of CCK-8 influence markedly the nature of the major cleavage fragments produced by the endopeptidase. The major bonds cleaved were Asp-Phe, Trp-Met and Gly-Trp for unsulfated CCK-8, whilst for the sulfated octapeptide, the Trp-Met bond became a minor cleavage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号