首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. 1. The butterfly Melitaea cinxia uses two host plant species in the Åland Islands of south-west Finland. Survey data show that host plant use is spatially variable and that the two species are not used (fed on by M . cinxia larvae) in proportion to their abundances. The pattern of host plant use by M . cinxia has been attributed in part to plant distribution and spatial variation of butterfly oviposition preference.
2. The additional roles that may be played by spatial variation in host plant quality and larval physiology (performance ability) were investigated. Seven years of field survey data and a series of laboratory experiments were used to demonstrate that neither of these variables contributed measurably to the observed pattern of host plant use.
3. Specifically, while there was great variation among individuals in both the performance ability of caterpillars and host plant suitability, the two plant species appeared equally suitable, there was no within-species geographic variation in plant suitability, and there was no evidence for adaptation of caterpillars to the locally used host plants.  相似文献   

2.
In most phytophagous insects, the larval diet strongly affects future fitness and in species that do not feed on plant parts as adults, larval diet is the main source of nitrogen. In many of these insect-host plant systems, the immature larvae are considered to be fully dependent on the choice of the mothers, who, in turn, possess a highly developed host recognition system. This circumstance allows for a potential mother-offspring conflict, resulting in the female maximizing her fecundity at the expense of larval performance on suboptimal hosts. In two experiments, we aimed to investigate this relationship in the polyphagous comma butterfly, Polygonia c-album, by comparing the relative acceptance of low- and medium-ranked hosts between females and neonate larvae both within individuals between life stages, and between mothers and their offspring. The study shows a variation between females in oviposition acceptance of low-ranked hosts, and that the degree of acceptance in the mothers correlates with the probability of acceptance of the same host in the larvae. We also found a negative relationship between stages within individuals as there was a higher acceptance of lower ranked hosts in females who had abandoned said host as a larva. Notably, however, neonate larvae of the comma butterfly did not unconditionally accept to feed from the least favorable host species even when it was the only food source. Our results suggest the possibility that the disadvantages associated with a generalist oviposition strategy can be decreased by larval participation in host plant choice.  相似文献   

3.
Riparian ecosystems play an important role in modulating a range of ecosystem processes that affect aquatic and terrestrial organisms. Butterflies are a major herbivore in terrestrial ecosystems and are also common in riparian ecosystems. Since butterflies use plants for larval food and adult nectar sources in riparian ecosystems, butterfly diversity can be utilized to evaluate riparian ecosystems. We compiled butterfly data from 33 sites in three riparian ecosystem types across the country and compared butterfly diversity in terms of number of species and quality index in relation to riparian environmental variables. Number of butterfly and plant species was not different among three riparian habitat types. Additionally, there was no significant ecological variable to distinguish the butterfly communities on three riparian habitats. Non-metric multi-dimensional scaling ordination showed that butterfly communities in three riparian ecosystem types differed from each other, and butterfly riparian quality index was the main variable for butterfly assemblages. Five indicator species for moor and another five species for riverine riparian ecosystems were identified. Three and one indicator species for moor and riparian ecosystems, respectively, were plant specialists, while 44 butterflies were general feeders, feeding on a wide range of hostplants in several habitats. These results suggest that butterfly species use actively riparian habitats for nectar and larval food, and the butterfly riparian quality index can be employed to track faunal change in riparian habitats, which are frequently threatened by disturbances such as water level and climate changes, and invasive species.  相似文献   

4.
Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.  相似文献   

5.
It is widely believed that the diversity of plants influences the diversity of animals, and this should be particularly true of herbivores. We examine this supposition at a moderate spatial extent by comparing the richness patterns of the 217 butterfly species resident in California to those of plants, including all 5,902 vascular plant species and the 552 species known to be fed on by caterpillars. We also examine the relationships between plant/butterfly richness and 20 environmental variables. We found that although plant and butterfly diversities are positively correlated, multiple regression, path models, and spatial analysis indicate that once primary productivity (estimated by a water-energy variable, actual evapotranspiration) and topographical variability are incorporated into models, neither measure of plant richness has any relationship with butterfly richness. To examine whether butterflies with the most specialized diets follow the pattern found across all butterflies, we repeated the analyses for 37 species of strict monophages and their food plants and found that plant and butterfly richness were similarly weakly associated after incorporating the environmental variables. We condude that plant diversity does not directly influence butterfly diversity but that both are probably responding to similar environmental factors.  相似文献   

6.
Global anthropogenic climate change is altering the phenology of many species, with implications for interacting species. If species use different cues or respond at different rates, this could result in asynchrony between hosts and herbivores. The larval stage of the endemic critically endangered Sinai Baton Blue butterfly (Pseudophilotes sinaicus) feeds exclusively on the buds and flowers of an endangered near-endemic plant, the Sinai Thyme (Thymus decussatus), with a narrow window in time when both larvae and flowers are present. We test for synchrony in time and space between the flowering phenology of the host plant and the associated timings and abundances of the Sinai Baton Blue. Together with significant spatial variation amongst patches, there were large inter-annual variations in flowering period, up to two weeks between years, indicating phenotypic plasticity in response to abiotic conditions. The butterfly flight period was approximately synchronised to the flowering of its host plant, but there was no evidence of any detailed spatial or temporal correlations in phenology. The dramatic annual population changes, possibly cycles, in the butterfly, may partly be driven by differences in the responses between plant and herbivore to climate that cause varying degrees of synchrony between years.  相似文献   

7.
The occurrence pattern of the marsh fritillary was studied within a patch network on the Baltic island Öland, Sweden. Presence/absence was established for potentially suitable habitat patches (n = 158) on calcareous moist grassland and analyzed in a multiple logistic regression model where patch area, patch isolation and nine habitat quality variables were included as explanatory variables. Larval food plant density was positively, and patch isolation negatively, correlated to the presence of Euphydryas aurinia. Area did not contribute to the explanation of the occurrence pattern. Significant interactions between larval food plant density times patch isolation, and larval food plant density times vegetation height, show that with low food plant density the butterfly primarily occurs in patches with a vegetation height of 4–10 cm, within a distance of 250 m from nearest occupied patch. In patches with a high food plant density the butterfly occurs in patches where the vegetation height is higher, 4–16 cm, and the distance to nearest occupied patch can be longer, up to 1.4 km. This study supports earlier findings in other regions, suggesting that a network of adjacent patches with a high food plant density and a vegetation height within the preferred threshold, despite their size, is an apparent conservation goal.  相似文献   

8.
《农业工程》2022,42(6):600-604
Plants sustain several ecosystem functions thereby playing a crucial role in conservation management. Lantana camara an invasive weed has become the common part of a bushes. The mutualistic relationship between this weed plant and butterflies are well known. Butterflies depend on Lantana camara for food, oviposition site, larval development etc. In this context we are highlighting the role of this invasive weed for butterfly conservation and maintaining total butterfly abundance. In this study the species richness highest for the site where the bushes were dominated by Lantana camara and lowest for the site where LCA abundance was low. The butterfly abundance and LCA abundance maintain a strong positive relationship and LCA abundance, species richness and and butterfly abundance are strongly correlated and dominance is negatively correlated with other three variables. So we can use the Lantana camara as a model organism for conservation and maintaining the butterfly abundance in Purulia, West Bengal, India.  相似文献   

9.
We studied the factors affecting the persistence of a frugivorous butterfly species, Hamadryas februa, in a set of forested islands located in Lago Guri, a reservoir in eastern Venezuela. The roles of isolation, area and habitat quality (larval host plant density, light conditions and presence of fruiting trees) in determining island butterfly densities were investigated through observations and experiments. Butterfly densities increased significantly with increase in both island area and local larval host plant density, but were not related to distance from colonizing sources, light conditions or presence of fruiting trees. Butterfly populations on even distant islands were not augmented by the experimental introduction of adults. Butterfly residence times were higher on sites located on a large island than on small islands. However, there was no evidence that the positive correlation between adult density and host plant density was caused by increased reproduction. The results indicate that butterfly densities are not constrained by colonization capabilities but rather, by lack of appropriate host plants and high rates of emigration from islands. The study indicates the importance of considering patterns in movement and habitat heterogeneity when designing conservation strategies for insects in fragmented landscapes.  相似文献   

10.
Population genetic patterns of species at their range margin have important implications for species conservation. We performed allozyme electrophoresis of 19 loci to investigate patterns of the genetic structure of 17 populations (538 individuals) of the butterfly Polyommatus coridon, a monophagous habitat specialist with a patchy distribution. The butterfly and its larval food plant Hippocrepis comosa reach their northern distribution margin in the study region (southern Lower Saxony, Germany). Butterfly population size increased with host plant population size. The genetic differentiation between populations was low but significant (FST = 0.013). No isolation-by-distance was found. Hierarchical F-statistics revealed significant differentiation between a western and an eastern subregion, separated by a river valley. The combination of genetic and ecological data sets revealed that the expected heterozygosity (mean: 18.5%) decreased with increasing distance to the nearest P. coridon population. The population size of P. coridon and the size of larval food plant population had no effect on the genetic diversity. The genetic diversity of edge populations of P. coridon was reduced compared to populations from the centre of its distribution. This might be explained by (i). an increasing habitat fragmentation towards the edge of the distribution range and/or (ii). a general reduction of genetic variability towards the northern edge of its distribution.  相似文献   

11.
Herbivores usually consume a mere fraction of available plant biomass. Spatial patterns in feeding damage may be attributable to induced defences by the host plant; a damaged plant reacts by lowering its nutritional value, thereby forcing herbivores to move on before food gets worse. In this study, we test this general hypothesis on a specific model system: caterpillars of the alpine butterfly Parnassius smintheus feeding on lance-leaved stonecrop Sedum lanceolatum. We first describe spatial patterns in host distribution and feeding damage within alpine meadows. We then use laboratory experiments to test a key assumption behind the proposed mechanisms: that the host plant exhibits an induced response with a negative impact on larval performance, and that this response is activated with a delay. Finally, we relate the patterns observed to the actual behaviour of Parnassius larvae.
Overall, we found the level of feeding damage to be low (on damaged plants, only 5% of all leaves were fed upon). Within meadows, both host plants and feeding damage were clumped at a small spatial scale. This pattern seemed directly explicable by the timing of the host's induced defence. Laboratory experiments revealed a delay of 1–2 d before the defence reached a level affecting larval performance, and wild larvae switch plants more quickly than this. A simulation model demonstrated that the spatial distribution of host plant damage can be generated by a simple random walk, based on the empirically observed step frequency, length and turning angles. Hence, as the most parsimonious explanation for the observed level and pattern of host plant damage, we offer a scenario where induced changes in host-plant quality limits the time spent per plant, but the herbivore moves throughout the landscape without any particular directionality.  相似文献   

12.
We studied host plant preference of the common blue butterfly, Polyommatus icarus , and larval performance on two different host plants, Oxytropis campestris and Lotus corniculatus . The study species is a small lycaenid butterfly believed to be relatively sedentary. The study populations originated from two different and widely separated geographical areas. In one area both hosts are naturally occurring, with O. campestris being most abundant at the study sites, in the other area only one of the host plants, L. corniculatus , is present. There was no difference in oviposition preference or larval performance between populations from the two different areas. Hence, P. icarus from sites dominated by O. campestris has not evolved a higher preference for or better performance on this host plant. More surprisingly, P. icarus from the area were O. campestris is completely absent has retained not only good larval performance on this host plant but also high female preference for it. This conservatism at a large geographical scale is seen even though there seems to be genetic variation present in both populations, at least for preference but perhaps also for performance. We suggest that such lack of variation in resource utilization between populations may be evidence for weak selection against "preferences" for plants that are rare or absent. A combination of other constraining factors may also contribute to some degree, especially stepping-stone gene flow between populations.  相似文献   

13.
Females of many insect species cluster their eggs. Egg clustering by lepidopteran species usually results in aggregation of larvae that are more often conspicuously coloured and apparently distasteful or unpalatable than larvae of solitary species. While the costs and benefits of aggregation in terms of larval survival and growth are well documented, the evolutionary ecology of egg clustering has been long debated and is still unresolved. We tested the egg desiccation hypothesis, first proposed by Stamp (1980), which to our knowledge has never been examined experimentally. The egg desiccation hypothesis proposes that egg clustering is adaptive per se (i.e. increases fitness of females) by reducing egg mortality via desiccation.We tested this hypothesis for the Nymphalid butterfly, Chlosyne lacinia, an egg-clustering species on its sunflower host plant, Helianthus annuus. We first documented natural variation in batch size for this butterfly. We then tested experimentally hatch success of varying batch sizes and egg-layering arrangements under controlled humidity levels. Hatch success was positively related to relative humidity. Eggs in larger groups with greater number of layers had greater hatch success than smaller, monolayered egg batches, especially when relative humidity was low. Our results indicate that, not only number of eggs, but also the arrangement (i.e. layering and density), increase batch survival by protecting eggs from desiccation. However, despite increased hatch success in dense, multilayered clusters, we found wide variation in layering and density in natural populations of C. lacinia. This variation is probably maintained by trade-offs in egg survival, such as increased cannibalism of eggs by siblings, in dense clusters. Nevertheless, protection from egg desiccation provides an alternative explanation for the origin and maintenance of egg clustering in lepidopterans and possibly other insects. The pattern of egg deposition in the Nymphalidae supports this hypothesis, since most North American species cluster their eggs tightly, whereas most species in tropical regions lay eggs singly or in loose monolayers.  相似文献   

14.
Returning to the classical diversity–stability problem about population densities, we propose a hypothesis that the spatial sparseness of food plants of herbivores, which is frequently observed in diversified communities such as those in the tropics, may be a potential source of the low variability in herbivore densities. The hypothesis consists of the following components: (1) sparseness of food plants of several herbivores increases with increasing number of plant species in a given amount of area, (2) spatial sparseness of food plants reduces the dispersal rate of herbivores between food plants, (3) such a decrease in dispersal rate causes a larger spatial variance in the consumption rate of food plants, (4) such a large spatial variance in the consumption rate of food plants reduces the temporal variance in the amount of food plants, and (5) the reduced temporal variance in the amount of food plants yields a smaller variance in the temporal dynamics of herbivores. A simple mathematical model was constructed to show a theoretical basis of the fourth component of the hypothesis. To exemplify the second, third, and fourth components of the hypothesis in fields, we conducted field experiments on the interaction between butterfly larvae and cabbages, in which cabbage seedlings were planted by two levels of sparseness: 1 m apart and 0.2 m apart. The spatial variance in the amount of leaf dry weight that escaped from larval feeding was larger in sparsely planted fields, which was in accordance with the third component of the hypothesis. The variability in the mean amount of leaf dry weight was smaller in sparsely planted fields, which was in accordance with the fourth component of the hypothesis. Received: June 14, 2001 / Accepted: February 14, 2002  相似文献   

15.
Behaviour of the egg-laying Monarch in captivity suggests that the concentration and quality of cardiac glycosides in the food plant are not important oviposition cues. The presence of eggs (as previously noted by Urquhart, 1960) and larvae feeding on the food plant, act as mild deterrents.
The butterfly's emetic potency (see Table XIII(a)) can sometimes surpass that of the leaves of the host plant itself. Unidentified factors, providing the internal plant environment, are more important as cardiac glycoside storage stimulants than either the quantity or quality of the cardenolides present. In the laboratory D. plexippus oviposited preferentially on a plant with relatively low cardiac glycoside content, but which produced the most powerfully protected (emetic) adult.
Metabolic changes during the pharate pupal stage, but also, in the case of Euploea core , in the larval fifth instar, rather than larval sequestration, may account for the major increase or decrease in butterfly toxicity compared with that of the food plant.
Temperature does not affect the storage of cardenolides except indirectly by altering metabolic rate. There is no evidence to support the concept that current "physiological cost" of cardenolide storage is high. Like the toad, this butterfly can be assumed to have evolved an enzvmatic system well adjusted to the presence of cardenolides in its bodv tissues.  相似文献   

16.
We evaluated whether protected European butterflies can potentially be at risk if transgenic maize is extensively grown in Central Europe. We explored potential consequences of both insect resistant (IR) and herbicide resistant (HR) transgenic maize. IR maize can produce pollen that is toxic to lepidopteran larvae, and this puts butterfly species at possible risk if the presence of young larvae coincides with maize flowering, during which large quantities of maize pollen can be deposited on vegetation. By considering the timing of maize flowering in Europe and the phenology of the protected Lepidoptera species, we found that 31 species had at least one generation where 50% of the larval stage overlapped with maize flowering, and 69 species for which first instar larvae were present during maize pollen shedding. HR maize allows high concentration herbicide treatments on fields without seasonal limitation, which can drastically reduce weed densities. In cases where such weed species are host plants for protected butterflies, reduced host plant/food availability can result, causing population decreases. By using published information, we first identified the important weed species in major maize-growing European countries. Subsequently, we checked whether the host plants of protected Lepidoptera included species that are common maize weeds. We identified 140 protected species having food plants that are common weeds in one or more of the major European maize-growing countries. If HR maize is grown in Europe, there is a potential hazard that their food plants will seriously decline, causing a subsequent decline of these protected species.  相似文献   

17.
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate‐based species distribution models (S‐SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate‐based S‐SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate‐based S‐SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S‐SDMs were more accurate in plant‐rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate‐based S‐SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate‐based S‐SDMs.  相似文献   

18.
1. Climate change poses serious threats to the long‐term persistence of many animal and plant populations. Species having specific niche requirements, or characterised by highly co‐evolved interactions, will face the greatest challenges. An example is represented by Maculinea alcon (Denis & Schiffermüller), a monophagous and univoltine butterfly species, which lays eggs only on larval host plants which occur inparticular phenological conditions. 2. The present 2‐year study focused on two M. alcon populations, both located at the southern boundaries of the species, but facing different climatic conditions (360 m, low altitude versus 860 m, high altitude). Population vulnerability with respect to direct and indirect effects of climate change was analysed, focusing on two important aspects of butterfly biology, i.e. the flight activity of adults and the degree of synchrony in the larval plant–insect interactions. 3. It was observed that, when positive temperature anomalies are reached, the temperature can exert detrimental effects on adults' activity. At a low altitude, in a hotter than usual year, a temperature threshold was recorded (around 32 °C), above which the activity of butterflies is inhibited. In contrast, at a high altitude, temperature increases maintain the opportunity to enhance butterfly activity. Altitudinal differences were also observed in the phenology of the two interacting species, which generate stronger asynchrony at low altitudes. 4. High‐ and low‐altitude populations represent different conservation units: a global increase in temperature would pose a serious threat to the lowland populations, whereas high‐altitude populations would gain a greater role in assuring the persistence of M. alcon at its southern boundaries.  相似文献   

19.
Many herbivorous insects feed on plant tissues as larvae but use other resources as adults. Adult nectar feeding is an important component of the diet of many adult herbivores, but few studies have compared adult and larval feeding for broad groups of insects. We compiled a data set of larval host use and adult nectar sources for 995 butterfly and moth species (Lepidoptera) in central Europe. Using a phylogenetic generalized least squares approach, we found that those Lepidoptera that fed on a wide range of plant species as larvae were also nectar feeding on a wide range of plant species as adults. Lepidoptera that lack functional mouthparts as adults used more plant species as larval hosts, on average, than did Lepidoptera with adult mouthparts. We found that 54% of Lepidoptera include their larval host as a nectar source. By creating null models that described the similarity between larval and adult nectar sources, we furthermore showed that Lepidoptera nectar feed on their larval host more than would be expected if they fed at random on available nectar sources. Despite nutritional differences between plant tissue and nectar, we show that there are similarities between adult and larval feeding in Lepidoptera. This suggests that either behavioral or digestive constraints are retained throughout the life cycle of holometabolous herbivores, which affects host breadth and identity.  相似文献   

20.
David B. Carey 《Oecologia》1994,99(3-4):337-342
Glaucopsyche lygdamus egg densities were surveyed over a 2000-m section of Gold Creek and at 30 different isolated patches in the Gold Basin drainage in Colorado. Host plant numbers and diversity were quantified, as well as other variables potentially influencing butterfly population size, such as patch size and isolation. Egg densities correlated significantly only with measures of host species diversity. Patches consisting of a single host species, no matter how large, did not support high butterfly densities, but patches of multiple, equitably distributed host species did. The most likely explantation, in light of oviposition preference and larval performance data accumulated for this butterfly species, is that host species diversity is necessary for the persistence ofG. lygdamus populations, because alternative host species buffer population losses during poor or unusual years. The dependence of both ovipositing butterflies and developing larvae on the ephemeral, young, host plant flowers make the butterfly especially vulnerable to year-to-year variation in host plant availability and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号