首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Receptors for olfactory stimulus molecules appear to be located at the surface of olfactory receptor cells. The ultrastructure of the distal region of rainbow trout (Salmo gairdneri) olfactory epithelium was examined by transmission electron microscopy. On the sensory olfactory epithelium, which occurs in the depressions of secondary folds of the lamellae of the rosettes, five cell types were present. Type I cells have a knob-like apical projection which is unique in this species because it frequently contains cilia axonemes within its cytoplasm in addition to being surrounded by cilia. Type II cells bear many cilia oriented unidirectionally on a wide, flat surface. Type III cells have microvilli on a constricted apical surface and centrioles in the subapical cytoplasm. Type IV cells contain a rod-like apical projection filled with a bundle of filaments, and type V cells are supporting cells. Cilia on the sensory epithelium contain the 9 + 2 microtubule fiber pattern. Dynein arms are clearly present on the outer doublet fibers, which suggests that the cilia in the olfactory region are motile. Their presence in olfactory cilia of vertebrates has been controversial. The cilia membrane in this species is unusual in often showing outfoldings, within which are included small, irregular vesicles or channels. In addition, cilia on type II cells frequently contain dense-staining bodies closely apposed to the membranes, along with a densely stained crown at the cilia tip. Previous biochemical evidence indicates that odorant receptors are associated with the cilia.  相似文献   

2.
This work summarizes the observations on 30 species of microdriles belonging to the families Naididae (Rhyacodrilinae, Pristininae, Naidinae, Phallodrilinae, and Tubificinae), Phreodrilidae, Lumbriculidae, and Enchytraeidae using scanning electron microscopy. The lumbricid Eiseniella tetraedra, a megadrile species common in typical microdrile habitats, was used for comparison. Microdriles display external ciliate sense structures along the entire body; even at the clitellum and in budding and regeneration zones. According to the shape of the cilia, these sense structures can be divided into receptors of blunt cilia, receptors of sharp cilia, and composed receptors. Sense receptors can be morphologically unconspicuous or clearly defined on sensory buds or papillae. All microdriles studied have receptors of blunt cilia. Enchytraeids have characteristic receptors of short cilia. Pristina (Pristininae), Chaetogaster, Ophidonais, and Stylaria (Naidinae) have receptors of long blunt cilia. Composed receptors were found only in some microdriles and E. tetraedra. Receptors of sharp cilia have been found in most microdriles. Enchytraeids might be the only exception, but sharp cilia are probably present in the amphibiotic Cognettia sphagnetorum. Sensory cells with long sharp cilia might play a rheoreceptor role, and their presence in E. tetraedra and C. sphagnetorum would imply the reappearing of an ancient character that was probably lost with the transit from aquatic to terrestrial habitats. Some lumbriculids have ciliated fields. Anatomically, these structures appear as intermediate between the typical isolate sensory structures of microdriles and the sensillae of the hirudineans. The general pattern in microdriles is that uniciliate receptors and multiciliate receptors are separated, which supports the presumed aquatic origin of the clitellates. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
OLFACTORY CILIA IN THE FROG   总被引:7,自引:4,他引:3       下载免费PDF全文
Olfactory epithelium from the frog was examined in the living state by light microscopy and in the fixed state by electron microscopy. Particular attention was paid to the layer of cilia and mucus which covers the surface of the epithelium. The olfactory cilia differed from typical cilia in that they (a) arose from bipolar neurons and had centrioles near their basal bodies, (b) were up to 200 microns in length, of which the greater part was a distal segment containing an atypical array of ciliary fibers, (c) were often immotile, (d) had their distal segments arranged in parallel rows near the surface of the mucus, and (e) had many vesicles along their shafts and had splits in the array of fibers in their distal segments. These specializations make the olfactory cilia similar to cilia found on other sensory cells and support the theory that they are the locus where electrical excitation in the olfactory organ is initiated by contact with odorous substances.  相似文献   

4.
Previous studies have indicated that the mantle margin of the gastropod mollusc Notoacmea scutum is sensitive to chemical, photic, and mechanical stimulation. Here, the ultrastructure of sensory cells on the mantle tentacles of N. scutum is examined by transmission electron microscopy to determine if morphological types of sensory cells can be correlated with known sensory capabilities. The sensory cells of the mantle tentacles are found to be ciliated, primary receptors with subepithelial nuclei. The ciliated sensory endings are concentrated at the tip of the tentacles, but also occur in smaller numbers along the shaft. Ultrastructural differences between cilia form the basis of distinguishing two types of sensory ending. Type 1 sensory endings, which are over 90% of the endings, bar unusual cilia that typically are filled with an electron-dense material. Type 2 sensory endings bear cilia that have a 9 + 2 arrangement of longitudinal elements and thus more closely resemble previously reported sensory cilia of molluscs.  相似文献   

5.
Summary The cerebral and epidermal ocelli of the Müller's larva and the cerebral and tentacular eyes of the adult turbellarian Pseudoceros canadensis were studied by electron microscopy. The right cerebral ocellus of the larva consists of one cup-shaped pigmented cell and three sensory cells that bear microvilli. The left cerebral eye of the larva has the above named cells plus a sensory cell with many cilia. Evolutionary significance is attributed to the presence of both ciliary and microvillar photoreceptors in an eye of a flatworm. The one epidermal ocellus of the larva is composed of two cells: a cup-shaped pigmented one bearing flattened cilia, the presumed photoreceptors, and a cell above the cup that adds a few nonciliary lamellae to the stack of ciliary ones from the pigmented cell. The adult eyes contain only microvillar receptors; cilia were not observed.  相似文献   

6.
Summary The eyespots of Microstomum lineare were studied by electron microscopy, light microscopy, and fluorescence microscopy. Each eyespot consists of two ciliary photoreceptor cells shielded by pigment cells and additional sensory cells. The photoreceptor cells are characterized by a distal intracellular cavity lined with 50–100 interwoven cilia. The other sensory cells are of two ultrastructurally different types, one with long cilia predominating and the other with balloonlike cilia. The pigment cells, which envelop processes of the sensory cells, contain pigment vacuoles varying in size and content and give a bright red fluorescence by the Falck-Hillarp method. The eyespots are suggested to perform a dual function as photoreceptors and chemoreceptors. The evolutionary significance of ciliary photoreceptors in Turbellaria is discussed.  相似文献   

7.
Summary The long tentacles of the Giant scallop Placopecten magellanicus (Gmelin) have been examined with light, scanning, and transmission electron microscopy. Three types of ciliated cells have been observed, one of which is located in specialised papillae born on the distal third of the tentacle. There are two separate cell types within the papillae. Type I cells are non-ciliated supporting cells, which form a capsule within which are found the Type II cells. These cells bear up to five cilia at their apices, and it is suggested that these are the receptor cells of the organ. No function has yet been determined for the receptors, but is suggested that they might be mechanoreceptors. A third cell type, Type III cells, occur at the base of the papillae. These cells bear many cilia and also macrocilia. Another ciliated cell type occurs on the proximal two thirds of the tentacle. These cells bear many cilia that are thought to be motile and not sensory.This research was supported by National Research Council of Canada Operating Grant No. A-6444 to Dr. V.C. Barber. Additional support came from the Department of Biology and School of Graduate Studies, Memorial University. Contribution No. 249 from the Marine Sciences Research Laboratory, Memorial University of Newfoundland  相似文献   

8.
Summary Scanning electron microscopy of various regions of the body of the marine gastropod Pleurobranchaea californica (McFarland) has revealed a characteristic cell type that bears cilia with dilated discoid-shaped tips. The tips of the cilia consist of an expansion of the ciliary membrane around a looped distal extension of the axoneme. These kinocilia have been observed in numerous other marine invertebrates and are generally referred to as paddle cilia (Tamarin et al. 1974) or discocilia (Heimler 1978). Although many functions have been proposed for paddle cilia, little empirical evidence supports any of the proposals. In Pleurobranchaea we have found that the distribution of this ciliated cell type corresponds exactly to areas of the body known from behavioral studies (Lee et al. 1974; Davis and Matera 1981) to mediate chemoreception. Transmission electron microscopy of the epithelium lining the rhinophores and tentacles of Pleurobranchaea revealed details of the ultrastructure of these ciliated cells and showed that they are primary receptors. These ciliated receptors lie in a yellow-brown pseudostratified columnar epithelium that superficially resembles the olfactory mucosa of vertebrates.  相似文献   

9.
The orientation of the cilia pseudotrochus is controlled by muscles inserted on their rootlets. The peculiar structures of buccal and pharyngeal cilia are described: their beating leads the food towards the mastax. The circular and longitudinal muscles of the buccal funnel allow peristaltic movements and probably the rejection of food items not accepted by the mastax receptors.  相似文献   

10.
Cilia are endowed with membrane receptors, channels, and signaling components whose localization and function must be tightly controlled. In primary cilia of mammalian kidney epithelia and sensory cilia of Caenorhabditis elegans neurons, polycystin-1 (PC1) and transient receptor polycystin-2 channel (TRPP2 or PC2), function together as a mechanosensory receptor-channel complex. Despite the importance of the polycystins in sensory transduction, the mechanisms that regulate polycystin activity and localization, or ciliary membrane receptors in general, remain poorly understood. We demonstrate that signal transduction adaptor molecule STAM-1A interacts with C. elegans LOV-1 (PC1), and that STAM functions with hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs) on early endosomes to direct the LOV-1-PKD-2 complex for lysosomal degradation. In a stam-1 mutant, both LOV-1 and PKD-2 improperly accumulate at the ciliary base. Conversely, overexpression of STAM or Hrs promotes the removal of PKD-2 from cilia, culminating in sensory behavioral defects. These data reveal that the STAM-Hrs complex, which down-regulates ligand-activated growth factor receptors from the cell surface of yeast and mammalian cells, also regulates the localization and signaling of a ciliary PC1 receptor-TRPP2 complex.  相似文献   

11.
Jacob Jelsing 《Zoomorphology》2002,121(4):213-220
The nuchal organs of Spio cf. filicornis from northern Europe have been studied by scanning and transmission electron microscopy. Spio cf. filicornis is the first species in which metameric nuchal organs are described. The nuchal organs consist of a distinct cephalic nuchal complex followed by metameric structures for a variable number of chaetigers. Their microanatomy corresponds to the general structural plan of nuchal organs: these are ciliated supporting cells and bipolar sensory cells with sensory cilia traversing an olfactory chamber. The organs are overlaid by a secondary paving-stone-like cover and innervated by longitudinally elongated paired nuchal nerves. The findings clearly favour the hypothesis that the paired metameric ciliated structures found in some Spionidae are in fact homologous with the prostomial nuchal organs characteristic of Polychaeta.  相似文献   

12.
The entire nervous system of the smallest annelid hitherto known, the dwarf male of the highly dimorphic species Dinophilus gyrociliatus , has been reconstructed by means of TEM investigations of serial ultrathin sections. Altogether there are 68 neurons, 40 of which have a sensory function. The structure and distribution of them is described. The receptor endings of the 20 sensory cells of each side are located either in two groups — the anterior receptor group and the posterior receptor group — or are singly positioned in the integument. Structural differences of the apical portion of the dendrites enables four types of receptors to be distinguished: three types with emergent cilia and one type with non-emergent cilia. Neurons with emergent cilia can be monociliated collar cells as well as mono- or multiciliated cells without collar. Special vesicle-in-vesicle structures, are located close to the basal portion of the cilia in some of these cells. The non-emergent cilia border closely to a neighbouring epidermal cell and contain a prominent intraciliary vesicle. The function of receptors is discussed with regard to a comparison with receptors in other polychaete species, structural specializations and their distribution pattern on the animal's surface.  相似文献   

13.
Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.  相似文献   

14.
The rotiferan jaw apparatus (mastax) is characterized by enormous plasticity and according to morphology and feeding strategy, different mastax types can be distinguished. The cuticular hard parts (trophi) of the mastax are often highly specialized and have both a major taxonomic and phylogenetic relevance. Owing to numerous light and scanning electron microscopic studies, the morphology of the trophi is well known but only few attempts have been made to analyze the morphology and functionality of the mastax as a whole. Particularly, the complex muscular system connecting the individual trophi elements and moving them against each other was disregarded in the past. Therefore, the subject of the present study is a detailed analysis of the mastax musculature of the proalid rotifer Bryceella stylata using a combination of transmission electron and confocal laser scanning microscopic techniques, previously applied for revealing the somatic musculature in rotifers exclusively. Based on ultrathin serial sections and phalloidin-dyed specimens, a total number of six paired and two unpaired individual mastax muscles have been identified for the modified malleate trophi system of B. stylata. Possibly homologous muscles in other, so far investigated rotifer species are discussed as well as functional considerations of the individual mastax muscles and their interaction when moving the trophi elements are suggested.  相似文献   

15.
Sectioned specimens ofBrachionus plicatilis were examined by scanning electron microscopy (SEM). This technique was used to characterize the out-side appearance as well as the position and arrangement of the hard parts (trophi) in the interior of the mastax. Two strips of muscle stretch dorsally across the width of the mastax. Below these muscle strips, all the other components of the mastax form a continuous structure which is smoothly locked to the outside. Some nerve structures and glands of the mastax are found on the dorsal side, outside these muscle strips. By comparing the shape of parts of the trophi, exposed by sectioning, with the views of preparations of isolated trophi, it was possible to estimate how the trophi are positioned in relation to other components of the mastax and in relation to the animal as a whole. The results are used to complement and modify statements and conclusion from a previous study.  相似文献   

16.
《Zoologischer Anzeiger》2009,248(4):285-298
The rotiferan jaw apparatus (mastax) is characterized by enormous plasticity and according to morphology and feeding strategy, different mastax types can be distinguished. The cuticular hard parts (trophi) of the mastax are often highly specialized and have both a major taxonomic and phylogenetic relevance. Owing to numerous light and scanning electron microscopic studies, the morphology of the trophi is well known but only few attempts have been made to analyze the morphology and functionality of the mastax as a whole. Particularly, the complex muscular system connecting the individual trophi elements and moving them against each other was disregarded in the past. Therefore, the subject of the present study is a detailed analysis of the mastax musculature of the proalid rotifer Bryceella stylata using a combination of transmission electron and confocal laser scanning microscopic techniques, previously applied for revealing the somatic musculature in rotifers exclusively. Based on ultrathin serial sections and phalloidin-dyed specimens, a total number of six paired and two unpaired individual mastax muscles have been identified for the modified malleate trophi system of B. stylata. Possibly homologous muscles in other, so far investigated rotifer species are discussed as well as functional considerations of the individual mastax muscles and their interaction when moving the trophi elements are suggested.  相似文献   

17.
Summary Cilia of the 9+2 pattern are found electron microscopically in nonependymal cells of the habenulae and the interpeduncular nucleus of the tadpole of Rana esculenta at an early stage of development (8 mm length, head to tip of tail). A comparison is made between these and the ependymal and sensory cilia in the same specimens. The cilia project into the neuropil emerging from a perikaryon rich in free ribosomes and displaying a prominent Golgi apparatus. These perikarya contain dense core vesicles. Synapses with vesicles of the clear spherical type have been observed along the ciliary shaft. On a purely morphologic basis the authors hypothesize that these cilia, at least in this early ontogenetic stage, may extend considerably the conducting surface of the cell and represent a sensory structure which could be stimulated by terminal processes belonging to distantly located cells. In addition, they could also be involved in the trophic exchange of material with the adjacent structures.  相似文献   

18.
The olfactory mucosa of the catfish (Ictulurus punctatus) has been briefly exposed to various concentrations of the non-ionic detergent Triton X-100. At high concentrations (1–4%) the upper layer of cells constituting the sensory and non-sensory areas of the lamellae is extensively damaged and new receptor cells do not appear in significant number before 2 months after treatment. Respiratory cells regenerate first followed by sustentacular and olfactory receptors. The regenerative process is very similar to that described previously after prolonged contact between the mucosa and ZnSO4. Low detergent concentrations 0.03 – 0.1% affect only the sensory area. Olfactory and sustentacular microvilli and cilia, are immediately severed by the chemical. Regeneration occurs within the next 4 days. The cellular membranes appear also to be affected. From anatomical, electrophysiological and biochemical studies both in vivo and in vitro, it can be hypothesized that receptors involved in the transduction process are solubilized by the detergent but reappear at a level corresponding to 50–60% of their original activity within 2 h.Proteins, having an amino acid binding effectiveness correlated to the amino acid electrophysiological activities measured in vivo, can be isolated from the solubilized material. Further studies will be necessary to confirm that some of these molecules are involved in the olfactory transduction mechanism.  相似文献   

19.
The glochidium of Margaritifera auricularia is described for the first time by using light microscopy, scanning electron microscopy and histological techniques. The larval mantle is formed by only two layers of cells; the inner one being much thicker, with microvilli. All cell masses of the glochidium are temporary aggregations that are the rudiments of organs of the subsequent juveniles which will be released after metamorphosis in the host tissues. In the glochidium there are three main masses of cells: (i) the muscle, which is in an anterior position; (ii) the oral plate in the centre of the larva; and (iii) the more ventrally and posteriorly situated ventral plate, or foot rudiment, flanged with lateral pits all bearing dense cilia. No rudimentary organs such as the pericardium, the kidney, the heart or nerve ganglia have developed. There are no visible hooks in the valve margins, but by using light microscopy we observed minute teeth covered by a rim of the periostracum. Near the margin of the shell there are two pairs of sensory hair tufts only observable by scanning electron microscopy. The glochidium of M. auricularia is the largest of the family Margaritiferidae and intermediate between the glochidium of the known species of this family and those of Unionidae.  相似文献   

20.
Behavioral and physiological experiments have shown that medicinal leeches are able to detect low amplitude surface waves, and further, that the transduction of this stimulus modality occurs primarily, if not exclusively, at the annular sensilla (Young, Dedwylder, and Friesen, 1981; Friesen, 1981). Here we examine the morphology of these specialized sensory structures using light, scanning electron, and transmission electron microscopes. We found that three types of ciliated sensory cells occur at the sensilla: (1) a uniciliate cell, with an axial cilium that projects at least 12 μm beyond the cuticle; (2) a multiciliate cell with from two to four grouped cilia that extend 1–3 μm beyond the cuticle; and (3) a second multiciliate cell, whose cilia project parallel to the body surface but remain within the cuticle. The cilia of all three cell types arise from the cuplike depressions which form the apices of slender, elongated cells (approximately 2 μm diameter × 50 μm length). A complexly interconnected ring of microvilli surrounds the cilium of the uniciliate cells. The morphology of the uniciliate cells closely resembles the structure of vibration-sensitive sensory neurons found in other species. We propose, based on previous results and our new findings, that the uniciliate receptor cells are the sensillar movement receptors which mediate leech sensitivity to water movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号