首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intact chloroplasts were isolated from sugarbeet leaves by the mechanical disruption technique normally used for spinach. The chloroplast pellet contained a ring of white irregularly shaped crystals which were identified as calcium oxalate. The chloroplasts were greater than 90% intact yet good rates of CO2 fixation were only obtained when inorganic pyrophosphate or 3-phosphoglycerate were added to the assay medium. Chloroplasts free of calcium oxalate were prepared by purification on a three step Percoll gradient. These purified chloroplasts were highly intact and showed high rates of CO2 fixation without adding inorganic pyrophosphate or 3-phosphoglycerate. With optimal assay conditions (0.2 mM orthophosphate and pH 8.0) rates of 110–130 mole per milligram chlorophyll per hour were routinely obtained. It is concluded that intact chloroplasts capable of high rates of CO2 fixation can be prepared from sugarbeet leaves using a simple three step Percoll gradient.Abbreviations BSA bovine serum albumin - Chl chlorophyll - Pi inorganic orthophosphate - PPi inorganic pyrophosphate - PGA 3-phosphoglycerate - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(aminoethyl ether) - N,N tetraacetic acid  相似文献   

2.
Dan Arnon, Bob Whatley, Mary Belle Allen, and their colleagues, were the first to obtain evidence for `complete photosynthesis by isolated chloroplasts' albeit at rates which were 1% or less of those displayed by the intact leaf. By the 1960s, partly in the hope of confirming full functionality, there was a perceived need to raise these rates to the same order of magnitude as those displayed by the parent tissue. A nominal figure of 100 μmol/mgċchlorophyll/h (CO2 assimilated or O2 evolved) became a target much sought after. This article describes the contributions that Dick Jensen and Al Bassham [(1966) Proc Natl Acad Sci USA 56: 1095–1101], and my colleagues and I, made to the achievement of this goal and the way in which it led to a better understanding of the role of inorganic phosphate in its relation to the movement of metabolites across chloroplast envelopes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Glycerate-3-P inhibits CO2 fixation of isolated spinach chloroplats at concentrations higher than 1 mM but does not inhibit O2 evolution. Glycerate-3-P inhibition of photosynthesis is not overcome by higher bicarbonate concentrations.  相似文献   

4.
G. H. Krause  M. Kirk  U. Heber  C. B. Osmond 《Planta》1978,142(2):229-233
When isolated intact chloroplasts or cells from spinach (Spinacia oleracea L.) leaves are incubated in the light in the absence of CO2, their capacity for subsequent CO2-dependent photosynthetic oxygen evolution is drastically decreased. This inhibition is light and oxygen-dependent and can be prevented by addition of bicarbonate. It is concluded that the normal dissipation of photosynthetic energy by carbon assimilation and in processes related to photorespiration is an essential condition for the physiological stability of illuminated intact chloroplasts and cells.Abbreviation chl chlorophyll  相似文献   

5.
Activation of CO 2 fixation in isolated spinach chloroplasts   总被引:5,自引:0,他引:5  
  相似文献   

6.
Postillumination CO2 fixation by wheat leaves was studied following light-limited photosynthetic conditions. Dark CO2 fixation showed two phases differing by their rates of CO2 uptake and carbon metabolism. These two phases are related to preillumination light flux density. During the first 30s of darkness, assimilated CO2 was found in PGA, alanine, malate and aspartate. After 5 min of darkness, it was additionally found in phosphorylated sugars.The lack of labelling of glycolate pathway intermediates shows that the Calvin cycle cannot run in the dark.The synthesized compounds indicate that reducing power but not ATP is available after turning the light off. This observation suggests that during pre-illumination, when light strictly limits photosynthesis, ATP supply would be the first limiting factor.
Résumé La fixation post-illuminatoire de CO2 par des feuilles de blé est étudiée, après une période de photosynthèse en lumière limitante.Les cinétiques de la vitesse de fixation du CO2 après extinction présentent deux phases, se différenciant par la vitesse de fixation du CO2 et par les voies métaboliques suivies par le carbone.Pendant les premières 30s d'obscurité, le CO2 fixé est retrouvé principalement dans le PGA, l'alanine, le malate et l'aspartate. Après 5 min d'obscurité le carbone est retrouvé également dans les esters phosphorylés des oses.L'absence de radioactivité dans les intermédiaires de la voie du glycolate indique que le cycle de Calvin ne peut pas fonctionner á l'obscurité.Les composés synthétisés à l'obscurité suggèrent que du pouvoir réducteur est disponible. Par contre l'ATP ne l'est pas. Ainsi, durant la période de pré-illumination oú la lumière était strictement limitante la disponibilité en ATP serait le premier facteur limitant l'assimilation du CO2.
  相似文献   

7.
《BBA》1986,849(3):355-365
Rapid CO2 gas exchange by Helianthus leaves was analysed kinetically using a computer model which distinguished different components of the gas exchange by different time constants. A rapid phase of CO2 uptake was ascribed to the solubilization of CO2 in all leaf compartments and to the conversion of the dissolved CO2 to HCO3 in the chloroplast stroma which contains carbonic anhydrase. From stromal HCO3CO2 ratios the stroma pH of darkened leaves was estimated to be close to 7.5. Occasionally, values as high as 8 or as low as 7 were also obtained. If fast HCO3 formation also occurs in the cytosol, pH values may be lower by about 0.3 pH units than those calculated under the assumption that carbonic anhydrase is localized in chloroplasts only. Illumination with a light intensity close to saturation of photosynthesis caused an increase in CO2 solubilization which indicated the alkalization of the chloroplast stroma by about 0.6 pH units. This is an underestimation, if the pH of cytosol decreases in the light liberating CO2 by the action of carbon anhydrase. An alkalization of the stroma by 0.6 pH units indicates the export of about 450 nmol H+/mg chlorophyll from the stroma. This forms the basis of a large transthylakoid pH gradient which drives light-dependent ATP synthesis. A pH gradient between stroma and cytosol is capable of supporting secondary gradients between these compartments in the light, such as a gradient in the ATPADP ratio. On darkening, the stroma alkalization was reversed. The rate of stroma acidification was much higher in the presence of CO2 than in its absence.  相似文献   

8.
Effects of calcium on photosynthesis in sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by inducing calcium deficiency and determining changes in CO2 uptake by attached leaves, electron transport, and photophosphorylation by isolated chloroplasts, and CO2 assimilation by ribulose diphosphate carboxylase extracts. Calcium deficiency had no significant effect on leaf CO2 uptake, photoreduction of ferricyanide, cyclic or noncyclic ATP formation of isolated chloroplasts, or on ribulose diphosphate carboxylase CO2 assimilation, when the rates were expressed per unit chlorophyll. When expressed per unit leaf area CO2 uptake increased by about 15% in low calcium leaves. The most noticeable effect of calcium deficiency was reduction in leaf area: low calcium had no effect on dark respiratory CO2 evolution, on leaf diffusion resistance, or on mesophyll resistance to CO2. We concluded that only small amounts of calcium are required for normal photosynthetic activity of sugar beet leaves.  相似文献   

9.
Developing chloroplasts were isolated from the basal region of green barley ( Hordeum vulgare L. cv. Menuet) leaves and their ultrastructure and biochemical composition were compared to those of mature chloroplasts from the tip of the same leaves, using two methods of purification on sucrose and Percoll gradients.
When examined and compared to mature chloroplasts, the developing chloroplasts showed well-developed grana stacks, but these last organelles were 2-fold smaller and contained lower amounts of chlorohylls and polar lipids. Only traces of trans -3-hexadecenoic acid could be detected in phosphatidylglycerol of developing plastids. The protein content of these plastids was higher than in mature plastids and showed an increased proportion of polypeptides linked to P-700 chlorophyll α-protein. The photosynthetic activity of these plastids was about 2-fold lower and their photosystem 1/photosystem II ratio higher than in mature chloroplasts.  相似文献   

10.
A method of isolating DNA from pea chloroplasts (ch-DNA) in CsCl density gradient is described. DNA preparations are free of 5-methylcytosine and have a melting temperature of 86.5 degrees. Denatured DNA molecules completely reassociate for 3 hours at 60 degrees C. It is concluded that the preparations obtained are pure ch-DNA.  相似文献   

11.
12.
An improved procedure for the mechanical isolation of chloroplasts of high degree of intactness (90-95%) and photosynthetic capacity (25-50 mmol of O2/s per mol of chlorophyll) is described. The combination of pea plants (Pisum sativum L.) as starting material and the high reproducibility of the procedure readily and cheaply yields reliable intact chloroplasts for photosynthetic studies.  相似文献   

13.
Using thylakoid membranes, we previously demonstrated that accumulated electrons in the photosynthetic electron transport system induces the electron flow from the acceptor side of PSII to its donor side only in the presence of a pH gradient ((Delta)pH) across the thylakoid membranes. This electron flow has been referred to as cyclic electron flow within PSII (CEF-PSII) [Miyake and Yokota (2001) Plant Cell Physiol. 42: 508]. In the present study, we examined whether CEF-PSII operates in isolated intact chloroplasts from spinach leaves, by correlating the quantum yield of PSII [Phi(PSII)] with the activity of the linear electron flow [V(O(2))]. The addition of the protonophore nigericin to the intact chloroplasts decreased Phi(PSII), but increased V(O(2)), and relative electron flux in PSII [Phi(PSII) x PFD] and V(O(2)) were proportional to one another. Phi(PSII) x PFD at a given V(O(2)) was much higher in the presence of (Delta)pH than that in its absence. These effects of nigericin on the relationship between Phi(PSII) x PFD and V(O(2)) are consistent with those previously observed in thylakoid membranes, indicating the occurrence of CEF-PSII also in intact chloroplasts. In the presence of (Delta)pH, CEF-PSII accounted for the excess electron flux in PSII that could not be attributed to photosynthetic linear electron flow. The activity of CEF-PSII increased with increased light intensity and almost corresponded to that of the water-water cycle (WWC), implying that CEF-PSII can dissipate excess photon energy in cooperation with WWC to protect PSII from photoinhibition under limited photosynthesis conditions.  相似文献   

14.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

15.
9-Aminoacridine has been used to monitor the intrathylakoid pH of photosynthetically competent intact chloroplasts. Values obtained from 9-aminoacridine accumulation in the chloroplasts must be corrected for light-dependent binding of 9-aminoacridine to the thylakoid membranes. During nitrite reduction by intact chloroplasts, the intrathylakoid proton concentration increased. It decreased somewhat during CO2 reduction. However, low concentrations of uncoupling amines such as NH3 or cyclohexylamine, which rapidly penetrated the chloroplast envelope and decreased the intrathylakoid proton concentration, failed to reduce, and actually stimulated, rates of CO2-dependent oxygen evolution even under rate-limiting light. In contrast, low concentrations of carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) OR NIGERICIN, WHICH INHIBITED CO2 reduction, even appeared to increase the intrathylakoid proton concentration. As indicated by measurements of the 515 nm signal of the chloroplasts, the light-induced membrane potential was not much affected by low concentrations of the uncoupling amines, but was decreased by FCCP and by high concentrations of the amines. Even in the presence of high concentrations of NH4C1, ATP/ADP ratios of illuminated chloroplasts remained far above the ratios observed in the dark. In contrast, low concentrations of FCCP were sufficient to reduce ATP/ADP ratios to the dark value even under high intensity illumination. The observations are difficult to explain within the framework of the chemiosmotic hypothesis as presently discussed.  相似文献   

16.
Freshly prepared spinach leaf protoplasts were gently ruptured by mechanical shearing followed by sucrose density gradient centrifugation to separate constituent cell organelles. The isolation of intact Class I chloroplasts (d = 1.21) in high yield, well separated from peroxisomes and mitochondria, was evidenced by the specific localization of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), NADP triose-P dehydrogenase (EC 1.2.1.9), and carbonic anhydrase (EC 4.2.1.1) in the fractions. A clear separation of chloroplastic ribosomes from the soluble cytoplasmic ribosomes was also demonstrated by the band patterns of constituent RNA species in the polyacrylamide gel electrophoresis. Localization of several enzyme activities specific to leaf peroxisomes, e.g. catalase (EC 1.11.1.6), glycolate oxidase (EC 1.1.3.1), glyoxylate reductase (EC 1.1.1.26), glutamate glyoxylate aminotransferase (EC 2.6.1.4), serine glyoxylate aminotransferase, and alanine glyoxylate aminotransferase (EC 2.6.1.12) in the peroxisomal fractions (d = 1.25), was demonstrated. Overall results show the feasibility of the method for the isolation of pure organelle components in leaf tissues.  相似文献   

17.
Chloroplasts isolated from spinach leaves by the mechanical method were intact and exhibited high rates of CO2-dependent oxygen evolution whereas chloroplasts isolated from sunflower leaves by the same technique were also intact but showed only low rates of oxygen evolution. The rate of uptake of orthophosphate (Pi) from the suspending medium with sunflower chloroplasts was less than 20% of that in spinach chloroplasts. The apparent Km for Pi transport was lower in sunflower chloroplasts but uptake was competitively inhibited by 3-phosphoglycerate in chloroplasts from both species. Uptake of malate (via the dicarboxylate transporter) and of ATP (via the adenine nucleotide transporter) was also reduced in sunflower chloroplasts compared to spinach chloroplasts. The endogenous Pi content and total exchangeable phosphate pool of sunflower chloroplasts were less than half that in spinach chloroplasts.Addition of a number of possible protective agents to the grinding medium failed to prevent the loss of photosynthetic activity during mechanical isolation of sunflower chloroplasts. Grinding mixtures of spinach and sunflower leaves together indicated that spinach chloroplasts were not inhibited by the sunflower leaf extract. Chloroplasts isolated from sunflower leaves via protoplasts had high rates of CO2-dependent oxygen evolution. The Vmax and Km for Pi uptake, endogenous Pi content and total exchangeable phosphate pool of chloroplasts isolated from sunflower protoplasts were all similar to spinach chloroplasts. It is concluded that inner envelope membrane proteins are damaged during mechanical isolation of sunflower chloroplasts. The decrease in activity of the phosphate transporter and loss of endogenous phosphate may contribute to the low rates of photosynthesis observed in chloroplasts isolated by the mechanical method from leaves of sunflower and possibly other species.Abbreviations PGA 3-phosphoglyceric acid  相似文献   

18.
The activity of ribulose 1,5-bisphosphate (RuBP) car?ylase in intact spinach chloroplasts is shown to depend on light and CO2. This activity was measured upon lysis of chloroplasts and assay of the initial activity using nonlimiting substrate concentrations. Incubation of chloroplasts at 25 °C in the absence of CO2 results in a gradual inactivation of the RuBP car?ylase. In the presence of CO2 the initial activity is preserved or increased. CO2 is also able to reactivate the chloroplast car?ylase previously inactivated in the absence of CO2. Upon illumination of the chloroplasts, additional activation was observed. This light activation results from an increased affinity for CO2 of the chloroplast car?ylase. At pH 7.8, the enzyme in dark-adapted chloroplasts required 112 μ m CO2 for half activation, while in the light it required 24 μ m CO2. The light activation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, carbonylcyanide 3-chlorophenylhydrazone, or dl-glyceraldehyde. Part of the light activation is most likely due to increased Mg2+ in the stroma. dl-Glyceraldehyde inhibition also suggests that some intermediate of the photosynthetic carbon cycle is involved. These results suggest that photosynthetic CO2 assimilation in the chloroplast depends upon the amount of activation of the RuBP car?ylase. This activation is regulated by CO2 and light-induced changes in the chloroplast stroma such as pH, Mg2+, and intermediates of the photosynthetic carbon cycle.  相似文献   

19.
Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO2 fixation media below −6 to −8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO2 fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse response of CO2 fixation to osmotic potential of the fixation medium was found with chloroplasts isolated from dehydrated leaves—namely, fixation rate was inhibited at −8 bars, compared with −16 or −24 bars.  相似文献   

20.
A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号