首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

2.
1. The annual input, contribution to the diet of salmonids, and quantitative input of terrestrial invertebrates to four reaches with contrasting forest (n=2) and grassland riparian vegetation (n=2) were compared in a Japanese headwater stream.
2. The annual input of terrestrial invertebrates falling into the forest reaches (mean±1 SE=8.7×103±0.3×103 mg m?2 year?1) was 1.7 times greater than that in the grassland reaches (5.1×103±0.8×103 mg m?2 year?1), with clear seasonality in the daily input of invertebrates in both vegetation types. The daily input, however, differed between the vegetation types only in summer, when it rose to a maximum in both vegetation types.
3. Fish biomass also differed among the seasons in both vegetation types, being less in the grassland reaches. The contribution of terrestrial invertebrates to the salmonid diet in the forest and grassland reaches was 11 and 7% in spring, 68 and 77% in summer, 48 and 33% in autumn, and 1 and 1% in winter, respectively. The prey consumption rate of fish, which was similar between the vegetation types, increased with stream temperature and was highest in summer. Terrestrial invertebrates supported 49% (mean±1 SE=5.3×103±0.4×103 mg m?2 year?1) of the annual, total prey consumption (10.9×103±1.7×103 mg m?2 year?1) by salmonids in the forest and 53% (2.0×103±0.3×103 mg m?2 year?1) (3.8×103±0.6×103 mg m?2 year?1) in the grassland reaches.
4. Salmonids were estimated to consume 51 and 35% of the annual total (falling plus drift) input of terrestrial invertebrates in the forest and grassland reaches, respectively. The input of terrestrial invertebrates by drift, however, was almost equal to the output in both vegetation types, suggesting that the reach‐based, in‐stream retention of terrestrial invertebrates almost balanced these falling in.
5. Difference in the riparian vegetation, which caused spatial heterogeneity in the input of terrestrial invertebrates, could play an important role in determining the local distribution of salmonids.  相似文献   

3.
1. Gut content analyses (GCA) of benthic macroinvertebrates, supplemented by carbon and nitrogen stable isotope analyses (SIA), were used to determine the relative contribution of leaf litter and autochthonous food sources to consumer biomass in five shaded and five unshaded streams in tropical Hong Kong. 2. Only four obligate shredders and two facultative shredders were identified out of 58 morphospecies dissected. Non‐shredder taxa consumed little (<23% food eaten) coarse particulate organic matter (CPOM) in spite of its abundance in streams, and GCA revealed that fine particulate organic matter was the major food (25–99%) of most primary consumers. 3. Stable isotope analysis results were in general agreement with the findings of GCA, and confirmed that three of the four obligate shredders had a high dependence (55–78% of assimilated carbon) on CPOM. 4. Autochthonous energy sources were important in all streams: non‐shredding primary consumers examined, which accounted for 72% of total macroinvertebrate abundance in shaded streams, derived (on average) 61% of their biomass from autochthonous foods; the equivalent values for unshaded streams were 72% (abundance) and 71% (biomass).  相似文献   

4.
1. Streams and their adjacent riparian zones are closely linked by reciprocal flows of invertebrate prey. We review characteristics of these prey subsidies and their strong direct and indirect effects on consumers and recipient food webs. 2. Fluxes of terrestrial invertebrates to streams can provide up to half the annual energy budget for drift‐feeding fishes such as salmonids, despite the fact that input occurs principally in summer. Inputs appear highest from closed‐canopy riparian zones with deciduous vegetation and vary markedly with invertebrate phenology and weather. Two field experiments that manipulated this prey subsidy showed that it affected both foraging and local abundance of stream fishes. 3. Emergence of adult insects from streams can constitute a substantial export of benthic production to riparian consumers such as birds, bats, lizards, and spiders, and contributes 25–100% of the energy or carbon to such species. Emergence typically peaks in early summer in the temperate zone, but also provides a low‐level flux from autumn to spring in ice‐free streams. This flux varies with in‐stream productivity, and declines exponentially with distance from the stream edge. Some predators aggregate near streams and forage on these prey during periods of peak emergence, whereas others rely on the lower subsidy from autumn through spring when terrestrial prey are scarce. Several field experiments that manipulated this subsidy showed that it affected the short‐term behaviour, growth, and abundance of terrestrial consumers. 4. Reciprocal prey subsidies also have important indirect effects on both stream and riparian food webs. Theory predicts that allochthonous prey should increase density of subsidised predators, thereby increasing predation on in situ prey and causing a negative indirect effect via apparent competition. However, short‐term experiments have produced either positive or negative indirect effects. These contrasting results may be due to characteristics of the subsidies and individual consumers, but could also result from differences in experimental designs. 5. New study approaches are needed to better determine the direct and indirect effects of reciprocal prey subsidies. Experiments coupled with comparative research will be required to measure their effects on individual consumer fitness and population demographics. Future work should investigate whether reciprocal prey fluxes stabilise linked stream–riparian ecosystems, explore how landscape context affects the magnitude and importance of subsidies, and determine how impacts of human disturbance can propagate between streams and riparian zones via these trophic linkages. Study of these reciprocal connections is helping to define a more holistic perspective of catchments, and has the potential to shape new directions for ecology in general.  相似文献   

5.
    
  1. In large lakes around the world, depth‐based changes in the abundance and distribution of invertebrate and fish species suggest that there may be concomitant changes in patterns of resource allocation. Using Lake Superior of the Laurentian Great Lakes as an example, we explored this idea through stable isotope analyses of 13 major fish taxa.
  2. Patterns in carbon and nitrogen isotope ratios revealed use of both littoral and profundal benthos among populations of most taxa analysed regardless of the depth of their habitat, providing evidence of nearshore–offshore trophic linkages in the largest freshwater lake by area in the world.
  3. Isotope‐mixing model results indicated that the overall importance of benthic food‐web pathways to fish was highest in nearshore species, whereas the importance of planktonic pathways increased in offshore species. These characteristics, shared with the Great Lakes of Africa, Russia and Japan, appear to be governed by two key processes: high benthic production in nearshore waters and the prevalence of diel vertical migration (DVM) among offshore invertebrate and fish taxa. DVM facilitates use of pelagic food resources by deep‐water biota and represents an important process of trophic linkage among habitats in large lakes.
  4. Support of whole‐lake food webs through trophic linkages among pelagic, profundal and littoral habitats appears to be integral to the functioning of large lakes. These linkages can be disrupted though ecosystem disturbance such as eutrophication or the effects of invasive species and should be considered in native species restoration efforts.
  相似文献   

6.
1. Autochthonous sources of organic matter appear to make a minor contribution to food webs in temperate forest streams, but their roles in supporting consumer biomass in tropical lotic environments have received little attention. We investigated the importance of autochthonous and allochthonous food sources to Brotia hainanensis (Pachychilidae), a detritivorous and algivorous snail common in Hong Kong hillstreams, using experimental dietary manipulations and assimilation-based analyses, including stoichiometry, carbon (C) and nitrogen (N) stable isotopes and fatty acid (FA) profiles.
2. Juvenile B. hainanensis collected in Pak Ngau Shek Stream were cultured under controlled laboratory conditions and fed for 2 months with either conditioned Liquidambar formosana (Hamamelidaceae) leaf litter or periphyton. Samples of B. hainanensis were also collected from the stream at the end of the experiment for comparison with snails reared in the laboratory.
3. Periphyton and leaf litter exhibited marked differences in C/N ratios, δ 13C and δ 15N values and FA profiles. Stable isotope analysis and FA profiling of laboratory-reared and field-collected B. hainanensis both confirmed that snails relied primarily on autochthonous foods, especially periphytic diatoms and cyanobacteria. Stoichiometry results indicated that periphyton was a more nutritious food (with lower C/N ratio) than leaf litter.
4. This is the first study demonstrating that the combined use of stable isotopes and FA profiles is an effective diagnostic tool to trace the basal food sources of consumers in natural stream habitats. Our findings further support the hypothesis that primary production in tropical streams is generally more important to aquatic consumers than inputs of terrestrial detritus.  相似文献   

7.
1. Trophic linkages between terrestrial and aquatic ecosystems are common and sensitive to disruption. However, there is little information on what causes variation in the strength and spatial scale of these linkages. 2. In the highly aquatic adults of the headwater salamander Gyrinophilus porphyriticus (family Plethodontidae), use of terrestrial prey decreases along a gradient from early‐ to late‐successional riparian forests. To understand the cause of this relationship, we tested the predictions that (i) terrestrial prey abundance is lower in late‐successional forests, and (ii) G. porphyriticus adults cannot move as far from the stream to forage in late‐successional forests, thus limiting access to terrestrial prey. 3. We established 100‐m long study reaches on six headwater streams in the Hubbard Brook Experimental Forest, New Hampshire. Three reaches were in early‐successional forests and three were in late‐successional forests. We conducted pitfall trapping for invertebrate prey in June and July of 2005, with three traps at 0, 2, 5 and 10 m from the stream at each reach. In June, July and August of 2004 and 2005, nighttime salamander surveys were conducted at each reach along ten, 10‐m long by 2.5‐m wide transects perpendicular to the stream. 4. Abundance of terrestrial prey was consistently lower in late‐successional forests, suggesting that consumption of terrestrial prey by G. porphyriticus is affected by prey abundance. Contrary to our prediction, G. porphyriticus adults moved farther from the stream in late‐successional forests, suggesting that habitat conditions in late‐successional forests do not limit movement away from the stream, and that lower abundances of terrestrial prey in these forests may cause salamanders to move farther from streams. 5. Our results provide novel insight on the extent of terrestrial habitat use by G. porphyriticus. More broadly, these results indicate that major habitat gradients, such as forest succession, can affect the strength and scale of terrestrial‐aquatic linkages. Application of this insight to the design of vegetation buffers along headwater streams would have widespread benefits to freshwater ecosystems.  相似文献   

8.
Rivers can provide important sources of energy for riparian biota. Stable isotope analysis (δ13C, δ15N) together with linear mixing models, were used to quantify the importance of aquatic insects as a food source for a riparian arthropod assemblage inhabiting the shore of the braided Tagliamento River (NE Italy). Proportional aquatic prey contributions to riparian arthropod diets differed considerable among taxa. Carabid beetles of the genus Bembidion and Nebria picicornis fed entirely on aquatic insects. Aquatic insects made up 80% of the diet of the dominant staphylinid beetle Paederidus rubrothoracicus. The diets of the dominant lycosid spiders Arctosa cinerea and Pardosa wagleri consisted of 56 and 48% aquatic insects, respectively. In contrast, the ant Manica rubida fed mainly on terrestrial sources. The proportion of aquatic insects in the diet of lycosid spiders changed seasonally, being related to the seasonal abundance of lycosid spiders along the stream edge. The degree of spatial and seasonal aggregation of riparian arthropods at the river edge coincided with their proportional use of aquatic subsidies. The results suggest that predation by riparian arthropods is a quantitatively important process in the transfer of aquatic secondary production to the riparian food web.  相似文献   

9.
Summary 1. To examine spatial heterogeneity of trophic pathways on a small scale (<5 m diameter), we conducted dual stable isotope (δ13C and δ15N) analyses of invertebrate communities and their potential food sources in three patchy habitats [sphagnum lawn (SL), vascular‐plant carpet (VC) and sphagnum carpet] within a temperate bog (Mizorogaike Pond, Kyoto, Japan). 2. In total, 19 invertebrate taxa were collected from the three habitats, most of which were stenotopic, i.e. collected from a single habitat. Amongst the habitats, significant variation was observed in the isotopic signatures of dominant plant tissues and their detrital matter [benthic particulate organic matter (BPOM)], both of which were potential organic food sources for invertebrates. Site‐specific isotopic variation amongst detritivores was found in δ13C but not in δ15N, reflecting site‐specificity in the isotopic signatures of basal foods. The eurytopic hydrophilid beetle Helochares striatus was found in all habitats, but showed clear site variation in its isotopic signatures, suggesting that it strongly relies on foods within its own habitat. 3. The most promising potential foods for detritivores were the dead leaf stalks of a dominant plant in the VC and BPOM in the SL and carpet. An isotopic mixing model (IsoSource version 1.3.1) estimated that aquatic predators rely on unknown trophic sources with higher δ13C than detritus, whereas terrestrial predators forage on allochthonous as well as autochthonous prey, suggesting that the latter predators might play key roles in coupling between habitats. 4. Our stable isotope approach revealed that immobile detritivores are confined to their small patchy habitats but that heterogeneous trophic pathways can be coupled by mobile predators, stressing the importance of habitat heterogeneity and predator coupling in characterising food webs in bog ecosystems.  相似文献   

10.
1. Use of the natural ratios of carbon and nitrogen stable isotopes as tracers of trophic interactions has some clear advantages over alternative methods for food web analyses, yet is limited to situations where organic materials of interest have adequate isotopic separation between potential sources. This constrains the use of natural abundance stable isotope approaches to a subset of ecosystems with biogeochemical conditions favourable to source separation. 2. Recent studies suggest that stable hydrogen isotopes (δD) could provide a robust tracer to distinguish contributions of aquatic and terrestrial production in food webs, but variation in δD of consumers and their organic food sources are poorly known. To explore the utility of the stable hydrogen isotope approach, we examined variation in δD in stream food webs in a forested catchment where variation in δ13C has been described previously. 3. Although algal δD varied by taxa and, to a small degree, between sites, we found consistent and clear separation (by an average of 67‰) from terrestrial carbon sources. Environmental conditions known to affect algal δ13C, such as water velocity and stream productivity did not greatly influence algal δD, and there was no evidence of seasonal variation. In contrast, algal δ13C was strongly affected by environmental factors both within and across sites, was seasonally variable at all sites, and partially overlapped with terrestrial δ13C in all streams with catchment areas larger than 10 km2. 4. While knowledge of isotopic exchange with water and trophic fractionation of δD for aquatic consumers is limited, consistent source separation in streams suggests that δD may provide a complementary food web tracer to δ13C in aquatic food webs. Lack of significant seasonal or spatial variation in δD is a distinct advantage over δ13C for applications in many aquatic ecosystems.  相似文献   

11.
1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among‐habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers.  相似文献   

12.
Exploring the trophic pathway of organic matter within the Mauguio lagoon (southern France, western Mediterranean), we found spatial differences in the isotopic composition (both δ13C and δ15N values) of organic matter sources (primary producers, particulate and sedimentary organic matter), which were mirrored in the upper trophic levels (invertebrates and fish). On average, δ13C was heavier by about 1.5–2‰ in the location under marine influence than in the sites influenced by freshwater discharge. The opposite trend was found for δ15N, which attained maximum values in the north-central zone influenced by freshwater delivery. For both C and N stable isotope ratios, the highest spatial variability was found in organic matter sources (2–3‰), while invertebrates and fish exhibited less variability (\~1–2‰). The differences observed may be related to both anthropogenic (wastewater input) and natural (marine vs. terrestrial inputs) factors. Discharge of wastewater, which affects the innermost location, generally determines an increase in the relative abundance of 15N. In addition, terrestrially derived nutrients and organic matter, which also affect the innermost location, are known to determine a shift towards 13C-depleted values. Our results substantiate the finding that the analysis of carbon and nitrogen stable isotopes can help in elucidating origin and fate of organic matter in coastal lagoons, which are characterised by a great spatial variability and complexity.  相似文献   

13.
1. Studies of mesic temperate and tropical rivers suggest an important role for floodplain habitats as nursery areas for larval and juvenile fishes. In arid‐land rivers the extent and duration of flooding is diminished and habitats and resources used by larval fishes are poorly known. Our study documented habitat and resource use of larval fishes in the Rio Grande, New Mexico, an arid‐land river. 2. Spatial and temporal distribution of larval and juvenile fishes and their inferred microhabitat preferences were studied during spring, summer and autumn, 2003. Stable carbon (13C : 12C) and nitrogen (15N : 14N) isotope ratios were measured to identify nutrient sources and characterise trophic positions of young‐of‐year fishes in this system. 3. Some fishes recruited during high flows (in spring), whereas others recruited during low‐flow periods in late summer. Regardless of the timing of reproduction, microhabitats with lower current velocity and higher temperature appeared to serve as vital nursery grounds for Rio Grande fishes. Ephemeral backwaters and disconnected side channels held the highest abundance and diversity of larvae and juveniles. 4. Stable isotope analyses revealed that fish larvae obtained carbon predominately from algal production in early summer, but used organic carbon derived from emergent macrophytes as river discharge decreased in mid‐summer. This shift may have been facilitated by microinvertebrate prey that grazed down edible algae and then switched to macrophytes in mid‐summer. Nitrogen isotope ratios did not differ among species or early life stages, suggesting that larval and juvenile fishes use similar food resources, especially when restricted to isolated pools in summer.  相似文献   

14.
1. We investigated the spatial (longitudinal position and reach geomorphology) and seasonal (spring and autumn) influences on the variation of δ13C among organic matter sources and consumers in a forested Piedmont river, South Carolina, U.S.A. 2. Six sites were sampled along a continuum and varied in basin area from approximately 30 to 300 km2. Sites fell into two geomorphic categories (i) high‐gradient, rock bed (‘rock’) or (ii) low‐gradient, sand bed (‘sand’) sites. 3. Variation in δ13C was more strongly related to reach geomorphology than longitudinal position. δ13C of biofilm and consumers was consistently enriched at rock sites. Leaf litter (i.e. coarse particulate organic matter, CPOM) δ13C did not vary with bed type. There was significant δ13C enrichment at rock sites for biofilm, seston, fine benthic organic matter (FBOM), and eight of nine consumer trophic guilds (e.g. grazing invertebrates, insectivorous fishes). δ13C of biofilm and four trophic guilds was also positively correlated with drainage area, but the magnitude of enrichment was less than between bed types. 4. δ13C was generally enriched in spring, but this varied among organic matter types, consumers, and by bed type. CPOM and seston were enriched in spring, FBOM was enriched in autumn, and biofilm showed no trend. Five consumer guilds were enriched in spring, and only one fish guild, generalised carnivores, showed enrichment of muscle tissue in autumn. 5. Consumer δ13C enrichment at rock sites suggests greater reliance on algal carbon than for consumers at sand sites, but we also found δ13C enrichment of biofilm at rock sites. Thus, differences in consumer δ13C between bed types could be related to (i) increased consumption of biofilm at rock compared with sand sites, or (ii) consumption of biofilm at rock sites that is enriched relative to biofilm at sand sites or (iii) both mechanisms. 6. δ13C signatures in local food webs appear to respond to processes operating at multiple spatial scales. Overall downstream enrichment of biofilm and consumers was disrupted by strong local effects related to bed morphology. These results suggest that human alteration of channel habitat will have corresponding effects on stream food webs, as assessed by changes in δ13C.  相似文献   

15.
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13 compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.  相似文献   

16.
1. δ13C and δ15N stable isotope signatures combined with an in situ microphytobenthic 13C labelling experiment were performed on epilithic biofilms of a large temperate river (the Garonne, France) to infer the trophic positioning of biofilm‐dwelling meiofauna and their uptake of microphytobenthic carbon. 2. Chironomidae larvae and Chromadorina spp. nematodes rapidly incorporated freshly produced microphytobenthic carbon in contrast to Rhyacophilidae larvae and Naididae oligochaetes. Quantitatively, macrofaunal Chironomidae incorporated more microphytobenthic carbon per day than did meiofauna. Moreover, Chironomidae seemed more involved in the spatial export of microphytobenthic carbon than nematodes. 3. Rhyacophilidae larvae were predators feeding on large meiofauna (Naididae and Chironomidae) but not on nematodes. Naididae oligochaetes primarily gained their carbon from allochthonous and/or microbial‐loop recycled sources. 4. A rapid and significant loss of labelled microphytobenthic carbon was observed. Feeding activity of biofilm‐dwelling invertebrates seemed not to be primarily involved in this loss.  相似文献   

17.
1.  Food webs represent the paths of material and energy flow through organisms in an ecosystem. Anuran larvae are important components of pond food webs: they are abundant, consume large quantities of food and serve as prey for many organisms. However, there are very basic uncertainties about the feeding ecology of anuran larvae; for instance, as to which trophic level they belong and whether species differ in resource use. Because anuran larvae have been employed in model systems in experimental ecology for decades, these uncertainties could lead to misinterpretation of published experiments, or inadequate designs of experiments directed at general, conceptual issues in ecology.
2.  Using 13C and 15N stable isotope and gut content analyses of free-ranging and enclosed tadpoles of four ranid species ( Lithobates sylvaticus , L. pipiens , L. clamitans , L. catesbeianus ) in the food webs of six wetlands, we tested the following null hypotheses: (i) that anuran larvae are strict primary consumers; (ii) that they are non-selective feeders and therefore exhibit little feeding niche differentiation; (iii) that they are opportunistic consumers and (iv) that their diet remains unchanged through ontogeny.
3.  All four species consumed and assimilated substantial amounts of animal food; bullfrog larvae, in particular, appear to be predatory. Significant feeding niche differentiation among species occurred with respect to the sources of carbon, consumption of animal matter and nutritional quality of food ingested. We further documented opportunistic feeding habits and ontogenetic shifts in diet.
4.  Collectively, these studies revealed complex trophic relationships that might require a reconsideration of the role of anuran larvae in pond food webs, as well as a reinterpretation of results of previous studies employing anuran larvae in model experimental systems.  相似文献   

18.
    
Understanding food‐web dynamics requires knowing whether species assemblages are compartmentalized into distinct energy channels, and, if so, how these channels are structured in space. We used isotopic analyses to reconstruct the food web of a Kenyan wooded grassland. Insect prey were relatively specialized consumers of either C3 (trees and shrubs) or C4 (grasses) plants. Arboreal predators (arthropods and geckos) were also specialized, deriving c. 90% of their diet from C3‐feeding prey. In contrast, ground‐dwelling predators preyed considerably upon both C3‐ and C4‐feeding prey. This asymmetry suggests a gravity‐driven subsidy of the terrestrial predator community, whereby tree‐dwelling prey fall and are consumed by ground‐dwelling predators. Thus, predators in general couple the C3 and C4 components of this food web, but ground‐dwelling predators perform this ecosystem function more effectively than tree‐dwelling ones. Although prey subsidies in vertically structured terrestrial habitats have received little attention, they are likely to be common and important to food‐web organization.  相似文献   

19.
1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies).
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ13C signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (13C-enriched signatures) and allochthonous (13C-depleted signatures) resources enter the food web. The migrating behaviour of fishes and shrimps between marine and freshwater during their life cycles can be followed by carbon isotopes. Here, shrimp δ13C signatures were shown to shift from −16‰ (for juveniles under marine influence) to −24.7‰ (for adults in freshwater habitats). For resident species, δ13C values partly reflected the species' habitat preferences along the river continuum : species living in river mouths were 13C-enriched in comparison with those collected upstream.
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ15N values of herbivores/detritivores were 5.0–8.4‰, omnivores 8.8–10.2‰ and carnivores 11–12.7‰.
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns.  相似文献   

20.
稳定性同位素技术在生态学上的应用   总被引:9,自引:2,他引:9  
稳定性同位素技术早在20世纪70年代末期就被引入到生态学领域。最初是利用植物稳定性碳同位素的差异。开展了许多有关营养流动方面的研究;到90年代,稳定性碳和氮同位素被用来分析动物的食性、营养级位置关系以及食物链结构;本世纪初,由于技术的进步,稳定性同位素(特别是氢同位素)被用来开展动物迁徙习性方面的研究。到目前为止,国内有关这方面的研究还鲜有报道,而且对自然界存在的稳定性同位素的理解还存在一定偏差。本文主要介绍了稳定性同位素效应及其分馏原理、稳定性同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究动物迁徙生态学中的作用等方面的内容。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号