首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sheng C  Harper JE 《Plant physiology》1997,113(3):825-831
Grafting studies involving Williams 82 (normally nodulating) and NOD1-3 (hypernodulating) soybean (Glycine max [L.] Merr.) lines and Lablab purpureus were used to evaluate the effect of shoot and root on nodulation control and plant growth. A single- or double-wedge graft technique, with superimposed partial defoliation, was used to separate signal control from a photosynthate supply effect. Grafting of hypernodulated soybean shoots to roots of Williams 82 or L. purpureus resulted in increased nodule numbers. Grafting of two shoots to one root enhanced root growth in both soybean genotypes, whereas the nodule number was a function of shoot genotype but not of the photosynthetic area. In double-shoot, single-root-grafted plants, removing trifoliolate leaves from either Williams 82 or NOD1-3 shoots decreased root and shoot dry matter, attributable to decreased photosynthetic source. Concurrently, Williams 82 shoot defoliation increased the nodule number, whereas NOD1-3 shoot defoliation decreased the nodule number on both soybean and L. purpureus roots. It was concluded that (a) soybean leaves are the dominant site of autoregulatory signal production, which controls the nodule number; (b) soybean and L. purpureus have a common, translocatable, autoregulatory control signal; (c) seedling vegetative growth and nodule number are independently controlled; and (d) two signals, inhibitor and promoter, may be involved in controlling legume nodule numbers.  相似文献   

3.

Background

Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress.

Results

Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress.

Conclusion

These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.  相似文献   

4.
5.
薛仁镐  张标 《遗传学报》2007,34(4):339-346
茉莉酸甲酯是一种调节植物形态发生、诱导防御相关基因的植物信号转导分子。为了解内源茉莉酸甲酯在植物发育中的作用,将编码茉莉酸甲基转移酶的NTR1基因与CaMV 35S启动子连接并导入大豆植株。PCR及Northern杂交结果表明,NTR1基因稳定整合在大豆基因组并得到过量表达。与野生型植株相比,转基因大豆叶片与根的形态发生了显著的变化。大部分转基因大豆叶片变得细长,初生根生长受到抑制而侧根的生长却受到促进。定量分析结果表明,转基因大豆植株叶片中茉莉酸甲酯的含量比对照高出 2~2.5 倍。这些结果表明,内源茉莉酸甲酯的积累参与了大豆形态发生的调控。  相似文献   

6.
7.
The structure and response to flooding of root cortical aerenchyma(air space tissue) in a variety of wetland (flood-tolerant)species was investigated and compared with some flood-intolerantspecies. In some species aerenchyma consisted of enlarged schizogenousintercellular spaces and in others aerenchyma formation involvedlysigeny. Two types of lysigenous aerenchyma were distinguished.In the first the diaphragms between lacunae were arranged radiallyand consisted of both collapsed and intact cells. In the secondtype, which was confined to the Cyperaceae, the radial diaphragmscontained intact cells, and stretched between them were tangentially-arrangeddiaphragms of collapsed cells. Flooding in sand culture generally increased root porosity (airspace content) although there were exceptions. The flood-intolerantspecies Senecio jacobaea produced aerenchyma but did not survivelong-term flooding. Among the flood-tolerant species, Filipendulaulmaria did not produce extensive aerenchyma even when flooded.Eriophorum angustifolium and E. vaginatum produced extensiveaerenchyma under drained conditions which was not increasedby flooding. In Nardus stricta root porosity was increased bylow nutrient levels as well as by flooding. Aerenchyma, root cortex, wetland plants, waterlogging, flooding-tolerance, Ammophila arenaria, Brachypodium sylvalicum, Caltha palustris, Carex curia, Eriophorum vaginatum, Filipendula ulmaria, Glyceria maxima, Hieracium pilosella, Juncus effusus, Myosotis scorpioides, Nardus stricta, Narthecium ossifragum, Phalaris arundinacea, Senecio jacobaea, Trichophorum cespitosum  相似文献   

8.
The response of leaf water potential to change in transpirationrate was examined in young soybean and cotton plants. Leaf waterpotential measured 1 h after transpiration became constant followinga change in humidity and was constant over a wide range of transpirationrates in both species. However, leaf water potential was notin equilibrium with flow until 3 h after transpiration becameconstant. At equilibrium an increase in transpiration alwaysresulted in a decrease in leaf water potential. It was alsofound that different responses of equilbrium leaf water potentialto transpiration rate occurred depending on whether transpirationwas altered by changing humidity, light intensity, or leaf area.Low light and decreased leaf area caused lower leaf water potentialsfor a given transpiration rate. These increases in root resistancecorrelated with lower rates of root elongation. The data indicatethat shoot-root interactions are occurring which affect apparentroot resistance to water flow, and complicate interpretationof whole plant data on leaf water potential and transpirationin terms of the flow dependence of root hydraulic characteristics.  相似文献   

9.
The assimilation of 15NH3 by crude breis prepared from crushedsoybean nodules was examined. The highest enrichment during60 min of reaction time with 15N was found in alanine and thenext highest in the amide-N of asparagine and glutamate. Thelabelling of allantoic acid was relatively low, although itwas higher than that of other amino compounds. Nodule breiswere separated into a bacteroid fraction and a supernatant plantfraction, and the 15NH3 incorporation into the main nitrogencompounds by each fraction was determined. The bacteroid fractionwas much more efficient in converting 15NH3 into glutamate,alanine and glycine than the supernatant fraction, while forallantoic acid, the supernatant fraction showed a greater ability.The incorporation of 15NH3 into allantoic acid was stronglyinhibited by the addition of azaserine or allopurinol, and enhancedby organic acid compounds, especially fumarate, succinate andmalate. The mode of ureide formation in the course of ammoniaassimilation in the soybean nodule is discussed. 1Present address: Department of Pharmacology, Nara Medical University,Kashihara, Nara 634, Japan. (Received February 2, 1981; Accepted May 16, 1981)  相似文献   

10.
Kouchi, H., Akao, S. and Yoneyama, T. 1986. Respiratory utilizationof 13C-labelled photosynthate in nodulated root systems of soybeanplants.—J. exp. Bot. 37: 985–993. An improved method for the measurement of respiratory utilizationof current photosynthate in the nodulated root system of water-culturedsoybean (Glycine max L.) plants was developed using a steady-state13CO2 labelling technique. Well-nodulated plants at the latevegetative stage were allowed to assimilate 13CO2 for 10 h incontinuous light at a constant CO2 concentration with a constant13C abundance. The respiratory evolution of 13CO2 from rootsand nodules was measured continuously throughout the periodof 13CO2 assimilation and during a subsequent 36 h chase periodby using a differential infrared 13CO2 analyser. The plantswere grown with nitrogen-free or (15 mmol dm–3)-containing culture solution for 3 d before13CO2 assimilation. In plants grown without , nodule respiration averaged 69% of the total respiration of the undergroundparts over the full experimental period and the CO2 respiredreached an apparent isotopic equilibrium at 80–85% labellingafter initiating 13CO2 assimilation. By contrast, the CO2 respiredfrom the roots did not reach an isotopic equilibrium and labellingwas only 56% at the end of exposure to 13CO2 These findingsdemonstrated that nodule respiration is strongly dependent onrecently assimilated carbon compared with root respiration. Plants supplied with in the culture solution showed a decreased rate of nodule respirationand a slightly increased rate of root respiration. The extentsand time courses of labelling of respired CO2 from both theroots and nodules were similar in the presence and absence of except that the maximum level of labelling of CO2 derived from nodule respiration in plantswith was significantly higher (about 91%) than for plants growing without . Key words: Soybean (Glycine max L.), nodule respiration, 13CO2, assimilation, carbon partitioning  相似文献   

11.
12.
自然界异黄酮合成途径主要存在于豆科植物中。以微生物为宿主研究异黄酮代谢,则需要将整个相关代谢途径的多酶体系组装到工程菌种,从而进行表达及代谢研究,这就需要用到多基因的转化和共表达技术。综合应用了多基因单载体和多基因多载体方法,将大豆异黄酮代谢途径中的五个关键酶基因导入到大肠杆菌中,对异黄酮代谢途径在大肠杆菌中的构建和表达进行了研究和探索,获得了含有五个外源基因的重组大肠杆菌;重组菌经IPTG诱导,以L-酪氨酸为底物进行发酵,发酵产物经过HPLC测定,结果表明和空白对照相比有新的代谢产物生成,初步断定为异黄酮类化合物。  相似文献   

13.
信号传导拮抗物对大豆细胞植保素和异黄酮积累的影响   总被引:3,自引:0,他引:3  
磷酸酶的抑制剂花萼海绵诱癌素A、芫菁素和冈田酸都能诱导大豆植保素(大豆素)的积累。相反,激酶的抑制剂K252a几乎完全阻止它们诱导大豆素的合成。与磷酸酶抑制剂相比较,酵母细胞壁激发子(YE)有利于诱导黄苷元、染料木苷等异黄酮中间体的积累,而磷酸酶的抑制剂有利于大豆素的合成。YE和芫菁素还呈现出协同诱导大豆素积累的效果。通过磷脂酶A2的抑制剂与阻止线粒体ATP合酶活性的化合物的分别处理,发现茉莉酸信号传导途径是参与调控大豆植保素合成的重要途径之一,而植保素的合成需要线粒体提供能量。  相似文献   

14.
The gross and net O2 evolution together with O2 uptake, CO2assimilation, transpiration, shoot dark respiration, root respirationand ion uptake of a soybean plant were studied during 19 d whichincluded two periods of water stress. O2 uptake was measuredusing 18O2 as a tracer. Short term water stress induced immediateand lasting effects: (1) reduction of light interception bywilting, (2) limitation of the total reducing equivalent producedby the electron transport chain, (3) decrease of stomatal conductancereducing both losses of water and the entry of CO2 for assimilation,(4) relative stimulation of O2 uptake. The ratio of O2 uptaketo CO2 assimilation changed from 1.0 before stress to 1.4 forseveral days after. Root respiration was less affected by thestress than ion uptake and shoot gas exchanges. Key words: Photosynthesis, Photorespiration, Transpiration, Shoot and root respiration, Ion uptake, Water stress, Glycine max. L.  相似文献   

15.
Treatment of second-stage juveniles (J2) of Meloidogyne incognita race 1 and M. javanica with soybean agglutinin, Concanavalin A, wheat germ agglutinin, Lotus tetragonolobus agglutinin, or Limax flavus agglutinin or the corresponding competitive sugars for each of these lectins did not alter normal root tissue response of soybean cultivars Centennial and Pickett 71 to infection by M. incognita race 1 or M. javanica. Giant cells were frequently induced in Centennial and Pickett 71 roots 5 and 20 days after inoculation of roots with untreated J2 of a population of M. incognita race 3. Treatment of J2 of M. incognita race 3 with the lectins or carbohydrates listed above caused Centennial, but not Pickett 71, root tissue to respond in a hypersensitive manner to infection by M. incognita race 3. Penetration of soybean roots by J2 of Meloidogyne spp. was strongly inhibited in the presence of 0.1 M sialic acid. Treatment of J2 with sialic acid was not lethal to nematodes, and the inhibitory activity of sialic acid was apparently not caused by low pH. These results suggest that carbohydrates may influence plant-nematode interactions.  相似文献   

16.
大豆异黄酮代谢途径在大肠杆菌中的构建及表达   总被引:1,自引:0,他引:1  
自然界异黄酮合成途径主要存在于豆科植物中。以微生物为宿主研究异黄酮代谢,则需要将整个相关代谢途径的多酶体系组装到工程菌种,从而进行表达及代谢研究,这就需要用到多基因的转化和共表达技术。综合应用了多基因单载体和多基因多载体方法,将大豆异黄酮代谢途径中的五个关键酶基因导入到大肠杆菌中,对异黄酮代谢途径在大肠杆菌中的构建和表达进行了研究和探索,获得了含有五个外源基因的重组大肠杆菌;重组菌经IPTG诱导,以L-酪氨酸为底物进行发酵,发酵产物经过HPLC测定,结果表明和空白对照相比有新的代谢产物生成,初步断定为异黄酮类化合物。  相似文献   

17.
受一定浓度SO_2熏气的大豆幼苗出现可见伤害以后,在继续熏气的过程中可见伤害程度不再进一步发展,表现出一定的适应性。与此相联系,膜透性增加和TTC还原力下降这两个SO_2伤害指标也得到一定程度的恢复,SO_2熏气使游离氨基酸含量增加,随着熏气时间延长,增加的游离氨基酸含量回到对照水平,提示受扰乱的代谢过程有所恢复。低浓度SO_2预处理提高了大豆对高浓度SO_2的抗性,与抗氧化有关的巯基(-SH)含量显著增加,超氧物歧化酶(SOD)活性也有所增强,同工酶谱分析显示有SOD同工酶带的酶量增加或新带出现。  相似文献   

18.
Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.  相似文献   

19.
The nr1 soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NOx (NO + NO2). It was tested for possible nonenzymic NOx formation and evolution because of known chemical reactions between NO2 and plant metabolites and the instability of nitrous acid. It did not evolve NOx during the in vivo NR assay, but intact leaves did evolve small amounts of NOx under dark, anaerobic conditions. Experiments were conducted to compare NO3 reduction, NO2 accumulation, and the NOx evolution processes of the wild type (cv Williams) and the nr1 mutant. In vivo NR assays showed that wild-type leaves had three times more NO3 reducing capacity than the nr1 mutant. NOx evolution from intact, anerobic nr1 leaves was approximately 10 to 20% that from wild-type leaves. Nitrite content of the nr1 mutant leaves was usually higher than wild type due to low NOx evolution. Lag times and threshold NO2 concentrations for NOx evolution were similar for the two genotypes. While only 1 to 2% of NOx from wild type is NO2, the nr1 mutant evolved 15 to 30% NO2. The kinetic patterns of NOx evolution with time weré completely different for the mutant and wild type. Comparisons of light and heat treatments also gave very different results. It is generally accepted that the NOx evolution by wild type is primarily an enzymic conversion of NO2 to NO. However, this report concludes that NOx evolution by the nr1 mutant was due to nonenzymic, chemical reactions between plant metabolites and accumulated NO2 and/or decomposition of nitrous acid. Nonenzymic NOx evolution probably also occurs in wild type to a degree but could be easily masked by high rates of the enzymic process.  相似文献   

20.
水杨酸与植物抗逆性   总被引:32,自引:3,他引:32  
综述了植物体内水杨酸对不同逆境的响应与信号转导、基因表达和蛋白质合成过程 ;对外施水杨酸的效应和与活性氧、抗氧化系统、脱落酸的关系 ,以及水杨酸作为系统信号分子的可能性作了讨论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号