首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death (PCD) or apoptosis is a common form of cellular demise during embryogenesis, tumorigenesis and clonal selection in the immune system. The bcl-2 proto-oncogene has been recently implicated as a potential physiological regulator of the PCD pathway. Gene transfer studies have shown that overexpression of bcl-2 blocks apoptosis mediated by several stimuli in cultured cell lines and promotes the survival of B and T lymphocytes in transgenic mice. However, it remains unclear whether under normal conditions bcl-2 is responsible for controlling cell death. We have investigated the role of bcl-2 in the antimembrane IgM (mIgM)-induced apoptotic death of WEHI-231 B cell lymphoma, a model that mimics clonal deletion of immature B cells by antigen. Signalling of mIgM receptors triggered downregulation of both bcl-2 RNA and protein, and induced apoptosis in WEHI-231 B cells. This effect appeared to be specific since (i) the levels of beta 2-microglobulin and beta-actin RNA remain unchanged and (ii) signalling of the apoptosis-resistant B cell lymphoma line BAL-17 with anti-mu was not associated with downregulation of bcl-2 RNA. However, stable expression of bcl-2 by transfection did not rescue WEHI-231 B cells from apoptosis, yet WEHI-231 cells overexpressing bcl-2 were more resistant to programmed cell death induced by heat-shock.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
L A O'Reilly  D C Huang    A Strasser 《The EMBO journal》1996,15(24):6979-6990
The effect of the cell death inhibitor Bcl-2 and its homologues on cell cycle regulation was explored in lymphocytes and cell lines. Expression of a bcl-2 transgene reduced proliferation of thymocytes and delayed cell cycle entry of mitogen-stimulated B and T lymphocytes. Overexpression of Bcl-2, Bcl-xL or adenovirus E1B19kD substantially delayed serum stimulation-induced S phase entry of quiescent NIH 3T3 fibroblasts. Bcl-2-mediated cell survival and growth inhibition are both antagonized by Bax. Bcl-2, Bcl-xL and E1B19kD, but not Bcl-2 mutants that are defective in blocking apoptosis, suppress growth of colon carcinoma cells. This evidence that regulation of cell survival is coupled to control of cell growth has implications for normal cell turnover and tumorigenesis.  相似文献   

3.
Autoimmune-prone lpr mice develop lymphoproliferative disorders, whereas their lymphocytes show accelerated apoptosis in culture. To elucidate whether the bcl-2 protein, a repressor of apoptosis, is critical to the discrepancy between in vivo and in vitro survival, we examined bcl-2 expression in T cells from +/+ and lpr mice during culture. The expression levels of bcl-2 in cultured T cells from lpr mice were significantly down-modulated compared to those from +/+ mice and freshly obtained T cells. Besides, the reduction of bcl-2 protein levels was inhibited in T cells cultured in the presence of T cell receptor (TCR) signalling. These results suggest that lpr T cells might be susceptible to apoptosis in vitro due to down-modulation of bcl-2 by withdrawal of TCR signalling.  相似文献   

4.
Sinomenine inhibits primary CD4+ T-cell proliferation via apoptosis   总被引:2,自引:0,他引:2  
Sinomenine is an active component isolated from Sinomenium acutum and is widely used as an immunosuppressive drug for treating autoimmune diseases. CD4(+) T-cell population plays a key role in adaptive immune response and is related to some autoimmune diseases. In this study, we investigated the possible immunosuppressive effect of sinomenine on CD4(+) T cells and its underlying mechanism. Our data demonstrated that sinomenine remarkably suppressed the proliferation of CD4(+) T cells, blocked the cell cycle progression from G0/G1 phase to S plusG2/M phases. Finally, the immunosuppressive activity elicited by sinomenine in CD4(+) primary lymphocytes was found to be largely accounted for by caspase 3-dependent cells apoptosis. Sinomenine did not significantly alter the expression of bcl-2 in activated CD4(+) primary T cells, suggesting that bcl-2 might not be involved in sinomenine-induced T cells apoptosis. In sum, this study proposes a novel mechanism for the immunosuppressive function of sinomenine on primary mouse CD4(+) T cells.  相似文献   

5.
Cell death is a prominent feature of B cell development. For example, a large population of B cells dies at the pre-B cell stage presumably due to the failure to express a functional immunoglobulin receptor. In addition, developing B cells expressing antigen receptors for self are selectively eliminated at the immature B cell stage. The molecular signals that control B cell survival are largely unknown. The product of the bcl-2 proto-oncogene may be involved as its overexpression inhibits apoptotic cell death in a variety of biological systems. However, the physiological role of the endogenous Bcl-2 protein during B cell development is undetermined. Here we show a striking developmental regulation of the Bcl-2 protein in B lymphocytes. Bcl-2 is highly expressed in CD43+ B cell precursors (pro-B cells) and mature B cells but downregulated at the pre-B and immature B cell stages of development. We found that Bcl-2 expressed by B cells is a long-lived protein with a half-life of approximately 10 h. Importantly, susceptibility to apoptosis mediated by the glucocorticoid hormone dexamethasone is stage-dependent in developing B cells and correlates with the levels of Bcl-2 protein. Furthermore, expression of a bcl-2 transgene rescued pre-B and immature B cells from dexamethasone-induced cell death, indicating that Bcl-2 can inhibit the apoptotic cell death of progenitors and early B cells. Taken together, these findings argue that Bcl-2 is a physiological signal controlling cell death during B cell development.  相似文献   

6.
It has been demonstrated that the cell lines used for production of biopharmaceuticals are highly susceptible to apoptosis, and that over-expression of the bcl-2 oncogene can protect cells from death. Stress associated with the deprivation of nutrients has been shown to be the main cause of apoptosis in culture. We have extended these studies by investigating the mechanism of cell death under conditions of sub-optimal pH, shear stress and hyperosmolarity, and the protective action of bcl-2 over-expression. At pH 6, there was no clear evidence of protection from cell death. However, at pH 8, the viability of the bcl-2 transfected cells was about 20% higher relative to the control cells. Cultivation of control cells in a flat bottomed bioreactor with a magnetic stirrer bar without a pivot ring resulted in exposure of the cells to a high attrition effect. As a result, cell growth was retarded and a high level of cell death by apoptosis was observed. Under the same conditions, the bcl-2 transfected cell line exhibited a nearly five fold increase in viable cell number. This finding indicates that under apoptosis-suppressed conditions, shear stress can stimulate cell growth. Batch cultivation of both control and bcl-2 transfected cells in 350 and 400 mOsm media resulted in suppression of cell growth, athough the effect was most marked in the control cell line. Adaptation of control cells to 400 mOsm proved to be impossible to achieve. However, the bcl-2 transfected cells exhibited resistance to the osmotic stress resulting in long term adaptation to a high salt environment. Specific productivity of bcl-2 transfected cells grown in high osmolarity medium was 100% higher than that produced by non- adapted bcl-2 transfected cells grown in normal osmolarity medium. These results demonstrate that bcl-2 has a beneficial effect on hybridoma cultivation under a wide range of culture stresses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Fas antigen and bcl-2 expression on peripheral blood mononuclear cells (PBMC) cultured with cytomegalovirus (CMV) and varicella—zoster virus (VZV) antigen was analyzed by three-color flow cytometry. Expression of Fas antigen increased significantly in CD45RO+ populations of both CD4+ and CD8+ cells obtained from CMV and VZV seropositive donors after culture with CMV and VZV antigen for 6 days. Fas antigen expression did not increase in PBMC cultured with control antigen. In contrast, bcl-2 expression decreased both in CD4+CD45RO+ and CD8+CD45RO+ cells from the same donors. Fas antigen and bcl-2 expression in CD45RA+ populations did not change. Cell viability of cultured cells with CMV and VZV antigen decreased after treatment with anti-Fas antibody and DNA fragments indicating apoptosis were detected in the cell lysate of these cultured cells after treatment with anti-Fas antibody. These data suggest that Fas antigen and bcl-2 protein may interact in regulating the cell death process of activated memory lymphocytes and eliminating lymphocytes activated by viral infection.  相似文献   

8.
Expression of c-myc and macromolecular synthesis have been associated with physiological cell death. We have studied their requirement for the death of factor (interleukin-3)-dependent cells (FDC-P1) bearing an inducible bcl-2 expression construct. FDC-P1 cells expressing bcl-2 turned off expression of c-myc when deprived of interleukin-3 but remained viable as long as bcl-2 was maintained. A subsequent decline in Bcl-2 allowed the cells to undergo apoptosis directly from G0, in the absence of detectable c-myc expression. Thus c-myc expression may lead to apoptosis in some cases but is not directly involved in the mechanism of physiological cell death that can be controlled by Bcl-2. The macromolecular synthesis inhibitors actinomycin D and cycloheximide triggered rapid cell death of FDC-P1 cells in the presence of interleukin-3, but the cells could be protected by Bcl-2. Thus, the cell death machinery can exist in a quiescent state and can be activated by mechanisms that do not require synthesis of RNA or protein.  相似文献   

9.
10.
Accelerated programmed cell death of MRL-lpr/lpr T lymphocytes.   总被引:8,自引:0,他引:8  
MRL-lpr/lpr (lpr) mice develop a polyclonal accumulation of abnormal peripheral T lymphocytes, which bear surface alpha beta TCR, CD3, and the B220 isoform of CD45, but lack CD4, CD8, and CD2. These T cells have a constitutively phosphorylated CD3 zeta chain and manifest a defect in signal transduction that results in a lack of IL-2 production and proliferation. We investigated whether this signaling abnormality might contribute to their accumulation via a defect in T cell elimination in the periphery. T cell deletion occurs through a process of programmed cell death with DNA degradation, or apoptosis. Viable lymphocytes from lpr mice were found to undergo rapid programmed cell death in culture within 4 h without additional activation, which was not observed in lymphocytes from normal MRL-+/+ or C57BL/6-+/+ mice. Both nonmature B220+ and mature B220- T lymphocytes from lpr mice display this accelerated programmed cell death, indicating that this is a defect affecting all peripheral T lymphocytes in lpr mice. In vitro apoptosis of lpr T cells could be inhibited with PMA, a stimulator of protein kinase C. Thus, the massive accumulation of T lymphocytes in the lymphoid tissue of lpr mice is not due to a defect in their ability to undergo programmed cell death in vitro. The activation state of lpr T cells may contribute to their rapid degradation of DNA in vitro.  相似文献   

11.
12.
Extracellular ATP causes apoptosis and/or necrosis of the hemopoietic lineage through the activation of P2X7 receptors. In this study, we investigated P2X7 receptor-mediated cell death during murine T cell maturation. The expression level and activity of P2X7 receptors, as measured by induction of cell death and pore formation, were higher in splenocytes than thymocytes. Flow cytometric analysis revealed that cell shrinkage was induced by activation of the P2X7 receptor in murine lymphocytes and the responding cells were T cells. Splenic T cells were more responsive than their thymic counterpart. These observations indicate that the system of P2X7 receptor-mediated cell death in T cells could be modulated during T cell maturation. Furthermore, decreased extracellular Cl- suppressed ATP-induced cell shrinkage in splenocytes without inhibiting ERK1/2 phosphorylation, which is reported to mediate necrotic cell death. Treatment with U0126 (a MEK inhibitor) suppressed ATP-induced ERK1/2 phosphorylation without inhibiting cell shrinkage. Moreover, decreased extracellular Cl- and treatment with U0126 suppressed ATP-induced cell death. These observations indicate that the activation of P2X7 receptor leads to T cell death by two independent pathways, one of which is cell shrinkage dependent and the other of which involves the phosphorylation of ERK1/2. In conclusion, we demonstrate increasing P2X7 receptor activity during T cell maturation and the existence of two essential pathways in P2X7 receptor-mediated T cell death. Our findings suggest that ATP-induced cell death of peripheral T lymphocytes is important in P2X7 receptor-regulated immune responses.  相似文献   

13.
bcl-x, a homologous gene of bcl-2, has an anti-apoptotic function and appears to play a critical role in the development of lymphoid systems. To investigate the effect of overexpressed Bcl-x(L) on the development of T lymphocytes, we established two lines of transgenic mice by using Emu-chicken bcl-x(L) (cbcl-x(L)) transgene, where the cBcl-x(L) protein was expressed mainly in lymphoid cells. Although thymocytes and splenocytes from cbcl-x(L) transgenic mice are resistant to apoptosis in vitro, clonal deletion of thymocytes, recognizing endogenous self-superantigens in the thymus, still normally proceeded and no self-reactive T cells were found in the spleen of the transgenic mice. To dissect clonal deletion, we utilized two in vitro models, thymocytes/antigen presenting cells co-culture system and fetal thymus organ culture system. In both, bacterial superantigen staphylococcus aureus enterotoxin B (SEB) induces apoptosis of T cells with Vbeta8+ T cell receptor (TCR) reacting to SEB, which mimics clonal deletion of self-reactive thymocytes in vivo. SEB-induced depletion of Vbeta8+ T cells from thymocytes when taken from the transgenic mice was effectively inhibited. The data might raise the possibility that cell death process involved in clonal deletion in the thymus is a form of apoptosis inhibited by Bcl-x(L).  相似文献   

14.
The functions of the antiapoptotic proteins Bcl-2 and Bcl-xL were examined in glioblastoma cells. Expression of both Bcl-2 and Bcl-xL were found to be elevated in protein lysates from seven early passage cell lines derived from human glioblastoma tumors compared with non-neoplastic glial cells. Down-regulation of both bcl-2 and bcl-xL expression in glioblastoma cell lines U87 and NS008 with bcl-2/bcl-xL bispecific antisense oligonucleotide resulted in spontaneous cell death. The mechanism of cell death was partially caspase-dependent. Executioner caspase 6 and caspase 7, but not caspase 3, were involved in apoptosis induced by bcl-2/bcl-xL antisense treatment. Interestingly, western blots failed to demonstrate expression of caspase 3 in two of the seven glioblastoma cell lines examined. The data support the hypothesis that Bcl-2 and Bcl-xL are important in preventing cell death in glioblastoma cells. It also suggests that there are functional pathways capable of successful completion of caspase-dependent cell death in gliomas. These findings support a potential role of bcl-2/bcl-xL bispecifc antisense oligonucleotide therapy as a treatment strategy to enhance caspase-dependent cell death in patients with glioblastoma.  相似文献   

15.
Cell lines derived from the hemopoetic lineages are widely used as hosts for the production of biologicals. These cell lines have been demonstrated to undergo high levels of the active death program commonly referred to as apoptosis. The effects of overexpression of the apoptosis suppressor gene bcl-2 on the properties of a Burkitt lymphoma were compared with the control cell line (transfected with a negative control plasmid) under a variety of conditions relevant to cell culture production technology. In stationary batch cultures, there was a clear reduction in both the rate of total cell death and the level of apoptosis during the decline phase of the bcl-2 transfected cell cultures as compared with that of the control cell cultures. Nutrient analysis revealed that the onset of death during the control cell cultures occurred following complete exhaustion of glutamine. However, the bcl-2 transfected cell cultures continued to grow even though glutamine had been exhausted, and a significant decline in viability only occurred when glucose had also been completely exhausted.When cells were cultured in suspension without prior adaptation, the bcl-2 transfected cells grew significantly better, suggesting that the bcl-2 gene protected the cells from apoptosis triggered by either the lack of substrate or the hydrodynamic environment. Fluorescence microscopy revealed that death of the control cells was almost entirely by apoptosis, whereas death was almost exclusively by necrosis in the delayed decline phase of the transfected cell cultures. In both instances, death occurred before total exhaustion of glucose and glutamine.The induction of apoptosis following growth arrest is a major impediment to the development of culture strategies that optimize specific productivity by reducing the growth rate. Results presented here suggest that suppression of apoptosis by bcl-2 under the condition of excess thymidine allows the maintenance of cells in a growth-arrested state for much longer than would otherwise be possible.When cells were transferred to a range of commercial serum-free media, cell growth was, in all cases, much better for the bcl-2 transfected cell line. Moreover, when cells were cultivated in glutamine-free medium, the control cells exhibited a decrease in viable cell number within the first 24 h whereas, for the bcl-2 transfected cell cultures, viable cell number did not exhibit any clear decrease until after 75 h. Clearly, these results indicate that the metabolic engineering approach can be used to alter advantageously the survival and proliferative capacity of cells in cell culture environments. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
Abstract: Expression of the protooncogene bcl-2 inhibits both apoptotic and in some cases necrotic cell death in many cell types, including neural cells, and in response to a wide variety of inducers. The mechanism by which the Bcl-2 protein acts to prevent cell death remains elusive. One mechanism by which Bcl-2 has been proposed to act is by decreasing the net cellular generation of reactive oxygen species. To evaluate this proposal, we measured activities of antioxidant enzymes as well as levels of glutathione and pyridine nucleotides in control and bcl-2 transfectants in two different neural cell lines—rat pheochromocytoma PC12 and the hypothalamic GnRH cell line GT1-7. Both neural cell lines overexpressing bcl-2 had elevated total glutathione levels when compared with control transfectants. The ratios of oxidized glutathione to total glutathione in PC12 and GT1-7 cells overexpressing bcl-2 were significantly reduced. In addition, the NAD+/NADH ratio of bcl-2 -expressing PC12 and GT1-7 cells was two- to threefold less than that of control cell lines. GT1-7 cells overexpressing bcl-2 had the same level of glutathione peroxidase, catalase, superoxide dismutase, and glutathione reductase activities as control cells. PC12 cells overexpressing bcl-2 had a twofold increase in superoxide dismutase and catalase activity when compared with matched control transfected cells. The levels of glutathione peroxidase and glutathione reductase in PC12 cells overexpressing bcl-2 were similar to those of control cells. These results indicate that the overexpression of bcl-2 shifts the cellular redox potential to a more reduced state, without consistently affecting the major cellular antioxidant enzymes.  相似文献   

17.
Apoptosis has recently been extensively studied and multiple factors have been implicated in its regulation. It remains unclear how these factors are ordered in the cell death pathway. Here we investigate the relationship between the inhibitor of apoptosis, bcl-2, and the PARP protease, prlCE/CPP32, recently implicated in apoptosis. Using PARP proteolysis as an indicator of the activation of the PARP protease, we find that the chemotherapeutic agent, etoposide, induces apoptosis and PARP proteolysis in Molt4 cells as early as 4 h with cell death lagging behind this event. In contrast, Molt4 cells that over-express bcl-2 show no PARP proteolysis or cell death. In order to determine if bcl-2 inhibits the PARP protease or its activation, we developed a cell-free system. Using this system with extracts from etoposide-treated cells and purified bovine PARP, we demonstrate that extracts from bcl-2 over-expressing cells cause little or no PARP proteolysis. Whereas, extracts from control vector cells contain an active PARP protease. This protease is inhibited by the tetrapeptide ICE-like protease inhibitor, YVAD-chloromethylketone. Interestingly, this protease is not inhibited by the addition of purified bcl-2 protein. These results rule out that bcl-2 directly inhibits the active protease or that it has an effect downstream of prlCE/CPP32 such as preventing access to the PARP substrate. These results also demonstrate a role of bcl-2 in interfering with an upstream signal required to activate the PARP protease and allow us to begin to order the components in the apoptotic pathway.  相似文献   

18.
Transforming growth factor-beta (TGF-beta) has been known as a potent immunosuppressive cytokine that can induce apoptosis in lymphoid cells. We established an IL-2-independent cell line, CTLL-2A, from murine T cell line CTLL-2. CTLL-2A expressed higher levels of CD95, CD69, and CD18 molecules than CTLL-2 did, suggesting a more activated state in CTLL-2A than in the CTLL-2 by phenotype. Exposing both CTLL-2 and CTLL-2A to TGF-beta results in differential apoptosis patterns defined by DNA fragmentation and plasma membrane alteration. Among the bcl-2 family members, bcl-2, bcl-w, and bcl-x(L) were also differently expressed in these two cell lines. In CTLL-2A, bcl-x(L) was amplified as a major anti-apoptotic molecule, and TGF-beta-induced cell death was more enhanced than in the original cell line. Caspase 1-like protease was activated by TGF-beta treatment and consequently it cleaved bcl-x(L) in CTLL-2A. TGF-beta-induced DNA fragmentation and cleavage of bcl-x(L) were inhibited by pretreatment with tetra peptide caspase 1 inhibitor, YVAD.cmk. These findings suggest that TGF-beta induces cell death in activated murine T cells through cleavage of bcl-x(L) via activated caspase 1-like protease, which may act as an important executor in that process.  相似文献   

19.
A substantial body of data indicates that reactive oxygen intermediates (ROIs) are implicated in pathogenesis of diverse human diseases. Oxidative stress induced by ROIs often causes cell death via apoptosis that is regulated by a plenty of functional genes and their protein products. Bcl-2 is one such protein that blocks apoptosis induced by various death stimuli. In spite of extensive research, the molecular mechanisms underlying antiapoptotic function of Bcl-2 are not fully clarified. In the present work, we have investigated the role of bcl-2 in protecting against beta-amyloid (Abeta)-induced oxidative death in rat pheochromocytoma (PC12) cells. Transfection with the antiapoptotic bcl-2 gene rescued PC12 cells from apoptotic death induced by Abeta. Addition of an NF-kappaB inhibitor, such as pyrrolidine dithiocarbamate or N-tosyl-l-phenylalanine chloromethyl ketone, to the media aggravated Abeta-induced PC12 cell death. PC12 cells overexpressing bcl-2 exhibited higher levels of constitutively activated NF-kappaB compared with vector-transfected controls, which appear to be mediated by the elevated activation of Akt/protein kinase B. The ectopic expression of bcl-2 enhanced both the expression and the activity of catalase, which were attenuated by NF-kappaB blockers. These results suggest that NF-kappaB plays a role in bcl-2-mediated protection against Abeta-induced apoptosis in PC12 cells through augmentation of cellular antioxidant capacity.  相似文献   

20.
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号